Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability ...Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.展开更多
To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier r...To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier results based on variational methods.展开更多
基金supported in part by the starting-up research fund supplied by Zhejiang University of Technology(109007329)supported in part by 985 Project(212011)+1 种基金973 Project(2011CB808000)the National Natural Science Foundation of China(11131003)
基金Project(50978112) supported by the National Natural Science Foundation of China
文摘Routine reliability index method, first order second moment (FOSM), may not ensure convergence of iteration when the performance function is strongly nonlinear. A modified method was proposed to calculate reliability index based on maximum entropy (MaxEnt) principle. To achieve this goal, the complicated iteration of first order second moment (FOSM) method was replaced by the calculation of entropy density function. Local convergence of Newton iteration method utilized to calculate entropy density function was proved, which ensured the convergence of iteration when calculating reliability index. To promote calculation efficiency, Newton down-hill algorithm was incorporated into calculating entropy density function and Monte Carlo simulations (MCS) were performed to assess the efficiency of the presented method. Two numerical examples were presented to verify the validation of the presented method. Moreover, the execution and advantages of the presented method were explained. From Example 1, after seven times iteration, the proposed method is capable of calculating the reliability index when the performance function is strongly nonlinear and at the same time the proposed method can preserve the calculation accuracy; From Example 2, the reliability indices calculated using the proposed method, FOSM and MCS are 3.823 9, 3.813 0 and 3.827 6, respectively, and the according iteration times are 5, 36 and 10 6 , which shows that the presented method can improve calculation accuracy without increasing computational cost for the performance function of which the reliability index can be calculated using first order second moment (FOSM) method.
基金Supported by National Natural Science Foundation of China under Grant No.10847001the SRF for ROCS,SEM,and Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘To solve the wave functions and energies of the groundstate of H+2 ion an iteration procedure for N- dimensional potentials is applied. The iterative solutions are convergent nicely, which are comparable to earlier results based on variational methods.