In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
The age-structure of natural population of Zoysia japonica in Xiuyan County of Liaoning Province was studied by generational method. The results showed that the highest tiller age class was three, but 1st age class ti...The age-structure of natural population of Zoysia japonica in Xiuyan County of Liaoning Province was studied by generational method. The results showed that the highest tiller age class was three, but 1st age class tillers held dominant posi-tion with proportions over 95% in each month during the growing seasons. The 2nd age class and 3rd age class tillers were minority in the population. So Z. japonica population was an expanding population. The zero age class buds on the rhizomes were dominant in buds age structures. The proportion of buds to tillers on quantity in each month was about 30% to 40% and reached the highest at the end of September. The increasing of buds proportion before dormancy guaranteed the quantity of tillers in the next spring. The biomass of 1st age class tillers changed with time. The biomass kept increasing from April to July and reached the highest at the end of July and then decreased.展开更多
An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harm...An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.展开更多
In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained ...In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.展开更多
Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are re...Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well.展开更多
In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the...In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.展开更多
In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is...In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is called the Hom-dimodule is introduced and its properties are discussed Moreover the category of Hom-dimodules in connection with the Hom D-equation R12 R23 =R23 R12 for R∈Endk M⊙M and a Hom-module M is investigated.Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.展开更多
In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By ...In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.展开更多
By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimens...By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.展开更多
In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treat...In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.展开更多
Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matri...Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.展开更多
The thermal switch algebra method and theory, which is used as a power tool of logic analyses of heat transfer process, is discussed in this paper, it was a practical application of pan-logic algebra in the heat scien...The thermal switch algebra method and theory, which is used as a power tool of logic analyses of heat transfer process, is discussed in this paper, it was a practical application of pan-logic algebra in the heat science. As an example of heat switch algebra application, the logic algebra model of interfacial thermal resister between Bi-2223 and AIN were built at the range from 30K to 200K according to the thermal switch algebra theory. The computer simulation results were agreed greatly with experiment data, the error is less that 5%. The design and analyses of digit heat routes can be described by the thermal switch algebra as well.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explici...The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.展开更多
Let A be a basic,connected finite dimensional algebra over an algebraically closed field with finite representation type, α(A) be the maximum of set consisting of numbers of indecomposable summands in the middle term...Let A be a basic,connected finite dimensional algebra over an algebraically closed field with finite representation type, α(A) be the maximum of set consisting of numbers of indecomposable summands in the middle term of Auslander Reiten sequences in mod A. In this paper we show that if α(A)=1, then Γ A contains oriented cycles if and only if Γ A contains DT r periodic modules. When α(A)2 we give counterexamples to the assertion.展开更多
To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of t...To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realizati...Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realization, many -dimensional equations which possess Kac–Moody–Virasoro-type infinite dimensional symmetry algebras are obtained.展开更多
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金This study was supported by the NKBRSF (G1999043407-1) Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-406+3 种基金 SCXZD0101) NKTRDP (2001BA510B-07 2002BA516A20) and Education Committee Projects of Liaong Province (990121400
文摘The age-structure of natural population of Zoysia japonica in Xiuyan County of Liaoning Province was studied by generational method. The results showed that the highest tiller age class was three, but 1st age class tillers held dominant posi-tion with proportions over 95% in each month during the growing seasons. The 2nd age class and 3rd age class tillers were minority in the population. So Z. japonica population was an expanding population. The zero age class buds on the rhizomes were dominant in buds age structures. The proportion of buds to tillers on quantity in each month was about 30% to 40% and reached the highest at the end of September. The increasing of buds proportion before dormancy guaranteed the quantity of tillers in the next spring. The biomass of 1st age class tillers changed with time. The biomass kept increasing from April to July and reached the highest at the end of July and then decreased.
文摘An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.
文摘In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.
基金Supported by the National High Technology Research and Development Program of China(2009AA04Z133)
文摘Qualitative algebraic equations are the basis of qualitative simulation,which are used to express the dynamic behavior of steady-state continuous processes.When the values and operation of qualitative variables are redefined,qualitative algebraic equations can be transformed into signed direct graphs,which are frequently used to predict the trend of dynamic changes.However,it is difficult to use traditional qualitative algebra methods based on artificial trial and error to solve a complex problem for dynamic trends.An important aspect of modern qualitative algebra is to model and characterize complex systems with the corresponding computer-aided automatic reasoning.In this study,a qualitative affection equation based on multiple conditions is proposed,which enables the signed di-rect graphs to describe complex systems better and improves the fault diagnosis resolution.The application to an industrial case shows that the method performs well.
文摘In a recent article [Commun. Theor. Phys. (Beijing, China) 43 (2005) 39], Xie et al. improved the extended tanh function method by introducing a generalized Riccati equation and its new solutions. Then they choose the Karamoto-Sivashinsky (KS) equation to illustrate their approach and obtain many exact solutions of the KS equation.So they claim that, by using their method, one not only can successfully recover the previously known formal solutions but also construct new and more general formal solutions for some nonlinear evolution equations. In this comment, we will show that the claim is incorrect.
基金The National Natural Science Foundation of China(No.11371089)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120092110020)the Postdoctoral Innovation Funds of Southeast University(No.3207013601)
文摘In order to study the deformation of algebras the notions of Hom-algebras are introduced.The Hom-algebra is a generalization of the classical associative algebra.First the Hom-type generalization of dimodules which is called the Hom-dimodule is introduced and its properties are discussed Moreover the category of Hom-dimodules in connection with the Hom D-equation R12 R23 =R23 R12 for R∈Endk M⊙M and a Hom-module M is investigated.Some solutions of the Hom D-equation from Hom-dimodules over Hom-bialgebras are given and the FRT-type theorem is constructed in the category of Hom-dimodules. The results generalize and improve the FRT-type theorem in the category of dimodules.
基金National Natural Science Foundation of China under Grant Nos.60774041 and 10671121
文摘In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
文摘In this paper, the problem of determining the largest possible set of symmetries for an important nonlinear dynamical system: the two-dimensional damped Kuramoto-Sivashinsky ((21)) DKS ) equation is studied. By applying the basic Lie symmetry method for the (217)) DKS equation, the classical Lie point symmetry operators are obtained. Also, the optimal system of one-dimensional subalgebras of the equation is constructed. The Lie invariants as well as similarity reduced equations corresponding to infinitesimal symmetries are obtained. The nonclassicaJ symmetries of the (2D) DKS equation are also investigated.
文摘By using a six-dimensional matrix Lie algebra [Y.F.Zhang and Y.Wang,Phys.Lett.A 360 (2006) 92], three induced Lie algebras are constructed.One of them is obtained by extending Lie bracket,the others are higher- dimensional complex Lie algebras constructed by using linear transformations.The equivalent Lie algebras of the later two with multi-component forms are obtained as well.As their applications,we derive an integrable coupling and quasi-Hamiltonian structure of the modified TC hierarchy of soliton equations.
文摘In this paper, we present a family of general New to n-like methods with a parametric function for finding a zero of a univariate fu nction, permitting f′(x)=0 in some points. The case of multiple roots is n ot treated. The methods are proved to be quadratically convergent provided the w eak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative meth ods with a variable parameter are developed.
基金Supported by the Natural Science Foundation of China(10071078)Supported by the Natural Science Foundation of Shandong Province(Q99A08)
文摘Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.
基金This work was supported by the nature science foundation of China (No. 51076013) and Ph.D. Program Foundation of Education of China (No. 20040487039).
文摘The thermal switch algebra method and theory, which is used as a power tool of logic analyses of heat transfer process, is discussed in this paper, it was a practical application of pan-logic algebra in the heat science. As an example of heat switch algebra application, the logic algebra model of interfacial thermal resister between Bi-2223 and AIN were built at the range from 30K to 200K according to the thermal switch algebra theory. The computer simulation results were agreed greatly with experiment data, the error is less that 5%. The design and analyses of digit heat routes can be described by the thermal switch algebra as well.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
文摘The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.
文摘Let A be a basic,connected finite dimensional algebra over an algebraically closed field with finite representation type, α(A) be the maximum of set consisting of numbers of indecomposable summands in the middle term of Auslander Reiten sequences in mod A. In this paper we show that if α(A)=1, then Γ A contains oriented cycles if and only if Γ A contains DT r periodic modules. When α(A)2 we give counterexamples to the assertion.
基金Supported by the National Natural Science Foundation of China under Grant No.10971031
文摘To extend the study scopes of integrable couplings, the notion of double integrable couplings is proposed in the paper. The zero curvature equation appearing in the constructing method built in the paper consists of the elements of a new loop algebra which is obtained by using perturbation method. Therefore, the approach given in the paper has extensive applicable values, that is, it applies to investigate a lot of double integrable couplings of the known integrable hierarchies of evolution equations. As for explicit applications of the method proposed in the paper, the double integrable couplings of the AKNS hierarchy and the KN hierarchy are worked out, respectively.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
文摘Using every realization of the Virasoro-type symmetry algebra , we can obtain various high-dimensional integrable models under the meaning that they possess infinitely many symmetries. By means of a concrete realization, many -dimensional equations which possess Kac–Moody–Virasoro-type infinite dimensional symmetry algebras are obtained.