Using the defining matrices of A1 in classical algebras An, Bn, Cn and Dn, deduce the embedding indices of the physical A1 algebra in classical algebras, The Ginocchio so(8) model is as an example.
For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well a...For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well as Poisson brackets are provided, and explicit examples for with are also given. For all , it is shown that the dynamics of the - and the -Toda chains are natural reductions of that of the -chain, and for , there is also a family of symmetrically reduced Toda systems, the -Toda systems, which are also integrable. In the quantum case, all -Toda systems with 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_12.gif'/> or 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_13.gif'/> describe the dynamics of standard Toda variables coupled to noncommutative variables. Except for the symmetrically reduced cases, the integrability for all -Toda systems survive after quantization.展开更多
Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and co...Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934-2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DC A-module with a free underlying graded A^#-module may not be semi-projective.展开更多
An algeber L is said to be simple, if its congruence lattice Con L reduces to the 2-elementchain {ω,v}. This paper describes the structure of finite simple Ockham algebras.
文摘Using the defining matrices of A1 in classical algebras An, Bn, Cn and Dn, deduce the embedding indices of the physical A1 algebra in classical algebras, The Ginocchio so(8) model is as an example.
基金The project supported in part by National Natural Science Foundation of China
文摘For any classical Lie algebra , we construct a family of integrable generalizations of Toda mechanics labeled a pair of ordered integers . The universal form of the Lax pair, equations of motion, Hamiltonian as well as Poisson brackets are provided, and explicit examples for with are also given. For all , it is shown that the dynamics of the - and the -Toda chains are natural reductions of that of the -chain, and for , there is also a family of symmetrically reduced Toda systems, the -Toda systems, which are also integrable. In the quantum case, all -Toda systems with 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_12.gif'/> or 1$' SRC='http://ej.iop.org/images/0253-6102/41/3/339/ctp_41_3_339_13.gif'/> describe the dynamics of standard Toda variables coupled to noncommutative variables. Except for the symmetrically reduced cases, the integrability for all -Toda systems survive after quantization.
基金the National Natural Science Foundation of China (10371036)the Natural Science Foundation of Beijing (1042001)the Fundamental Research Foundation of Beijing University of Technology (KZ0601200382)
文摘This paper deals with Δ-good filtration dimensions of a standardly stratified algebra and Δ[x]-good titration dimensions of its polynomial algebra.
基金supported by National Natural Science Foundation of China (Grant No. 11001056)by the China Postdoctoral Science Foundation (Grant No. 20090450066),by the China Postdoctoral Science Foundation (Grant No. 201003244)by Key Disciplines of Shanghai Municipality (Grant No. S30104)
文摘Let A be a connected cochain DG algebra, whose underlying graded algebra is an Artin-Schelter regular algebra of global dimension 2 generated in degree 1. We give a description of all possible differential of A and compute H(A). Such kind of DG algebras are proved to be strongly Gorenstein. Some of them serve as examples to indicate that a connected DG algebra with Koszul underlying graded algebra may not be a Koszul DG algebra defined in He and We (J Algebra, 2008, 320: 2934-2962). Unlike positively graded chain DG algebras, we give counterexamples to show that a bounded below DC A-module with a free underlying graded A^#-module may not be semi-projective.
文摘An algeber L is said to be simple, if its congruence lattice Con L reduces to the 2-elementchain {ω,v}. This paper describes the structure of finite simple Ockham algebras.