In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions ar...In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).展开更多
The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explici...The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.展开更多
Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equatio...Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.展开更多
The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, ...The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, whereas a spherical joint can be treated as an ideal one. The mechanism in the form of a closed-loop kinematic chain was divided by cut joint technique into two open-loop kinematic chains in place of the spherical joint. Joint coordinates and homogeneous transformation matrices were used to describe the geometry of the system. Equations of the chains' motion were derived using formalism of Lagrange equations. Cut joint constraints and reaction forces, acting in the cutting place---i.e, in the spherical joint, have been introduced to complete the equations of motion. As a consequence, a set of differential-algebraic equations has been obtained. In order to solve these equations, a procedure based on differentiation twice of the formulated constraint equations with respect to time has been applied. In order to determine values of friction torques in the rotational joints in each integrating step of the equations of motion, joint forces and torques were calculated using the recursive Newton-Euler algorithm taken from robotics. For the requirements of the method, a model of a rotational joint has been developed. Some examples of results of the numerical calculations made have been presented in the conclusions of the paper.展开更多
The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by s...The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain...Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.展开更多
This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and...Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure.展开更多
In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
This paper investigates the form of complex a lgebraic differential equation with admissible meromorphic solutions and obtains two results which are more precise thatn that of the paper [2].
Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic different...Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic differential equations.展开更多
Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the form of a type of algebraic differential equation with admissible meromorphic solutions and obtain a Malmquist type theorem.
The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illus...The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.展开更多
A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model int...A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.展开更多
A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the ...A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.展开更多
This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher orde...This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher order AODE, provided a proper parametrization of its solution hypersurface. The authors reduce the problem of finding the rational general solution of a higher order AODE to finding the rational general solution of an associated system. The rational general solutions of the original AODE and its associated system are in computable 1-1 correspondence. The authors give necessary and sufficient conditions for the associated system to have a rational solution based on proper reparametrization of invariant algebraic space curves. The authors also relate invariant space curves to first integrals and characterize rationally solvable systems by rational first integrals.展开更多
This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation ph...This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation phenomena: Transcritical bifurcation, singularity induced bifurcation, and Hopf bifurcation. Compared with other biological systems described by differential equations, singularity induced bifurcation only occurs in singular system and usually links with the expansion of population. When the diffusion is present, it is shown that the positive equilibrium point loses its stability at some critical values of diffusion rate and periodic oscillations occur due to the increase of time delay. Furthermore, numerical simulations illustrate the effectiveness of results and the related biological implications are discussed.展开更多
基金The project supported by the State Key Basic Research Program of China under Grant No 2004CB318000
文摘In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).
文摘The method of Riccati equation is extended for constructing travelling wave solutions of nonlinear partial differential equations. It is applied to solve the Karamoto-Sivashinsky equation and then its more new explicit solutions have been obtained. From the results given in this paper, one can see the computer algebra plays an important role in this procedure.
基金Supported by the National Natural Science Foundation of China(10471065) Supported by the Natural Science Foundation of Guangdong Province(04010474)
文摘Using Nevanlinna theory and value distribution of meromorphic functions and the other techniques,we investigate the counting functions of meromorphic solutions of systems of higher-order algebraic differential equations and obtain some results.
文摘The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, whereas a spherical joint can be treated as an ideal one. The mechanism in the form of a closed-loop kinematic chain was divided by cut joint technique into two open-loop kinematic chains in place of the spherical joint. Joint coordinates and homogeneous transformation matrices were used to describe the geometry of the system. Equations of the chains' motion were derived using formalism of Lagrange equations. Cut joint constraints and reaction forces, acting in the cutting place---i.e, in the spherical joint, have been introduced to complete the equations of motion. As a consequence, a set of differential-algebraic equations has been obtained. In order to solve these equations, a procedure based on differentiation twice of the formulated constraint equations with respect to time has been applied. In order to determine values of friction torques in the rotational joints in each integrating step of the equations of motion, joint forces and torques were calculated using the recursive Newton-Euler algorithm taken from robotics. For the requirements of the method, a model of a rotational joint has been developed. Some examples of results of the numerical calculations made have been presented in the conclusions of the paper.
基金The project supported by Natural Science Foundation of Shandong Province of China+2 种基金National Natural Science Foundation of Chinathe Doctor Foundation of the Ministry of Education of China
文摘The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
文摘Using the Nevanlinna theory of the value distribution of meromorphic functions, we investigate the existence problem of admissible algebroid solutions of generalized complex algebraic differential equations and obtain some results.
基金Supported by the Natural Science Foundation of Guangdong Province(04010474) Supported by the Foundation of the Education Department of Anhui Province for Outstanding Young Teachers in University(2011SQRL172)
文摘This paper is concerned with the order of the solutions of systems of high-order complex algebraic differential equations.By means of Zalcman Lemma,the systems of equations of[1]is extended to more general form.
文摘Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure.
基金National Natural Science Foundation of China under Grant Nos.60774041 and 10671121
文摘In this paper, with the aid of symbolic computation, we present a new method for constructing soliton solutions to nonlinear differentiM-difference equations. And we successfully solve Toda and mKdV lattice.
文摘This paper investigates the form of complex a lgebraic differential equation with admissible meromorphic solutions and obtains two results which are more precise thatn that of the paper [2].
基金Supported by the National Natural Science Foundation of China (19871050)
文摘Using the Nevanlinna theory of the value distribution of meromorphic func- tions,we investigate the problem of the existence of admissible meromorphic solutions of a type of systems of higher-order algebraic differential equations.
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, we investigate the form of a type of algebraic differential equation with admissible meromorphic solutions and obtain a Malmquist type theorem.
基金The present paper is in honor of late Professor R.Thom as a great mathematician, a great scientist,also a great thinker of modern times.
文摘The char-set method of polynomial equations-solving is naturally extended to the differential case which gives rise to an algorithmic method of solving arbitrary systems of algebrico-differential equations.As an illustration of the method,the Devil's Problem of Pommaret is solved in details.
基金This work was supported by National Science Foundation of China 61273008 and 61203001, Doctor Startup Fund of Liaoning Province (20131026), Fundamental Research Funds for the Central University (N140504005) and China Scholarship Council. The authors gratefully thank referees for their valuable suggestions.
文摘A differential-algebraic prey--predator model with time delay and Allee effect on the growth of the prey population is investigated. Using differential-algebraic system theory, we transform the prey predator model into its normal form and study its dynamics in terms of local analysis and Hopf bifurcation. By analyzing the associated characteristic equation, it is observed that the model undergoes a Hopf bifurcation at some critical value of time delay. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, and an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.
基金supported by the China Postdoctoral Foundation (Grant Nos. 20080440217, 200902666)
文摘A robust nonlinear control method is presented for spacecraft precise formation flying.With the constraint forces and consid-ering nonlinearity and perturbations,the problem of the formation keeping is changed to the Lagrange systems with the holonomic constraints and the differential algebraic equations (DAE).The nonlinear control laws are developed by solving the DAE.Because the traditional numerical solving methods of DAE are very sensitive to the various errors and the resulting con-trol laws are not robust in engineering application,the robust control law designed method is further developed by designing the correct coefficients to correct the errors of the formation array constraints.A numeral study simulated the robustness of this method for the various errors in the formation flying mission,including the initial errors of spacecraft formation,the reference satellite orbit determination errors,the relative perturbation forces model errors,and so on.
基金supported by the Austrian Science Foundation(FWF) via the Doctoral Program "Computational Mathematics" under Grant No.W1214Project DK11,the Project DIFFOP under Grant No.P20336-N18+2 种基金the SKLSDE Open Fund SKLSDE-2011KF-02the National Natural Science Foundation of China under Grant No.61173032the Natural Science Foundation of Beijing under Grant No.1102026,and the China Scholarship Council
文摘This paper generalizes the method of Ng6 and Winkler (2010, 2011) for finding rational general solutions of a first order non-autonomous algebraic ordinary differential equation (AODE) to the case of a higher order AODE, provided a proper parametrization of its solution hypersurface. The authors reduce the problem of finding the rational general solution of a higher order AODE to finding the rational general solution of an associated system. The rational general solutions of the original AODE and its associated system are in computable 1-1 correspondence. The authors give necessary and sufficient conditions for the associated system to have a rational solution based on proper reparametrization of invariant algebraic space curves. The authors also relate invariant space curves to first integrals and characterize rationally solvable systems by rational first integrals.
基金This work was supported by the National Science Foundation of China under Grant No. 60974004 and Natural Science Foundation of China under Grant No. 60904009.
文摘This paper studies a prey-predator singular bioeconomic system with time delay and diffusion, which is described by differential-algebraic equations. For this system without diffusion, there exist three bifurcation phenomena: Transcritical bifurcation, singularity induced bifurcation, and Hopf bifurcation. Compared with other biological systems described by differential equations, singularity induced bifurcation only occurs in singular system and usually links with the expansion of population. When the diffusion is present, it is shown that the positive equilibrium point loses its stability at some critical values of diffusion rate and periodic oscillations occur due to the increase of time delay. Furthermore, numerical simulations illustrate the effectiveness of results and the related biological implications are discussed.