In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorith...In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.展开更多
Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and soft...Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.展开更多
基金The National Natural Science Foundation of China(No.61300167)the Open Project Program of State Key Laboratory for Novel Software Technology of Nanjing University(No.KFKT2015B17)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20151274)Qing Lan Project of Jiangsu Provincethe Open Project Program of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education(No.JYB201606)the Program for Special Talent in Six Fields of Jiangsu Province(No.XYDXXJS-048)
文摘In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
基金Projects(61202004,61272084)supported by the National Natural Science Foundation of ChinaProjects(2011M500095,2012T50514)supported by the China Postdoctoral Science Foundation+2 种基金Projects(BK2011754,BK2009426)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(12KJB520007)supported by the Natural Science Fund of Higher Education of Jiangsu Province,ChinaProject(yx002001)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Private clouds and public clouds are turning mutually into the open integrated cloud computing environment,which can aggregate and utilize WAN and LAN networks computing,storage,information and other hardware and software resources sufficiently,but also bring a series of security,reliability and credibility problems.To solve these problems,a novel secure-agent-based trustworthy virtual private cloud model named SATVPC was proposed for the integrated and open cloud computing environment.Through the introduction of secure-agent technology,SATVPC provides an independent,safe and trustworthy computing virtual private platform for multi-tenant systems.In order to meet the needs of the credibility of SATVPC and mandate the trust relationship between each task execution agent and task executor node suitable for their security policies,a new dynamic composite credibility evaluation mechanism was presented,including the credit index computing algorithm and the credibility differentiation strategy.The experimental system shows that SATVPC and the credibility evaluation mechanism can ensure the security of open computing environments with feasibility.Experimental results and performance analysis also show that the credit indexes computing algorithm can evaluate the credibilities of task execution agents and task executor nodes quantitatively,correctly and operationally.