The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and ...The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and surface tensions of the mixtures decreased monotonously with increasing temperatures and increasing ionic liquid (IL) molar fraction. IL with longer alkyl side-chain length brings a lower density and a smaller surface tension to the ILs/H2SO4 binary mixtures. The densities and surface tensions of the mixtures are fitted well by Jouyban-Acree (JAM) model and LWW model respectively. Redlich-Kister (R-K)equation and modified Redlich-Kister (R-K) equation describe the excess molar volumes and excess surface tensions of the mixtures well respectively. Adding a small amount of ILs (XIL 〈 0.1 ) into sulfuric acid brings an obvious decrease to the density and the surface tension. The results imply that the densities and surface tensions of IL5/H2SO4 binary mixtures can be modulated by changing the IL dosage or tailoring the IL structure.展开更多
Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This l...Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.展开更多
A novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes is proposed based on Chinese remainder theory(CRT). The method can not only increase the code length without reducing the girth, but ...A novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes is proposed based on Chinese remainder theory(CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate(BER) of 10^(-7), the net coding gain(NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field(GF(q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.展开更多
The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity meth...The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homo- geneous degree distribution. We also show that the instability of the mean-field caiculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is dose to the dynamicai transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentiaily numerous codewords sharing the identical ferromagnetic energy.展开更多
A coded modulation scheme for deep-space optical communications is proposed, which is composed of an outer single- parity-check (SPC)-based product code, an interleaver, a bit-accumulator and a pulse-position modula...A coded modulation scheme for deep-space optical communications is proposed, which is composed of an outer single- parity-check (SPC)-based product code, an interleaver, a bit-accumulator and a pulse-position modulation (PPM). It is referred as SPC-APPM code, which is decoded with an iterativc demodulator-decoder using standard turbo-decoding techniques. Investigations show that the scheme has the advantages of low encoding and decoding complexities, good performance and flexible code rate for all rates above I/2. Meanwhile, simulation results demonstrate that the SPC-APPM provides the performance similar to the low-density parity-check-APPM (LDPC-APPM), superior to the LDPC-PPM and product accumulate code-PPM (PA-PPM), although inferior to serially concatenated PPM (SCPPM). At the bit error rate (BER) of 105, the performance of SPC-APPM is about 0.7 dB better than LDPC-PPM and 1.2 dB better than PA-PPM.展开更多
基金Supported by the National Natural Science Foundation of China(21576168,21276163)
文摘The densities and surface tensions of [Bmim][TFO]/H2SO4, [Hmim][TFO]/H2SO4 and [Omim][TFO]/H2SO4 binary mixtures were measured by pycnometer and Wilhelmy plate method respectively. The results show that densities and surface tensions of the mixtures decreased monotonously with increasing temperatures and increasing ionic liquid (IL) molar fraction. IL with longer alkyl side-chain length brings a lower density and a smaller surface tension to the ILs/H2SO4 binary mixtures. The densities and surface tensions of the mixtures are fitted well by Jouyban-Acree (JAM) model and LWW model respectively. Redlich-Kister (R-K)equation and modified Redlich-Kister (R-K) equation describe the excess molar volumes and excess surface tensions of the mixtures well respectively. Adding a small amount of ILs (XIL 〈 0.1 ) into sulfuric acid brings an obvious decrease to the density and the surface tension. The results imply that the densities and surface tensions of IL5/H2SO4 binary mixtures can be modulated by changing the IL dosage or tailoring the IL structure.
基金the Aerospace Technology Support Foun-dation of China(No.J04-2005040).
文摘Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyjA 0554 and cstc2013jcyjA 40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘A novel construction method of quasi-cyclic low-density parity-check(QC-LDPC) codes is proposed based on Chinese remainder theory(CRT). The method can not only increase the code length without reducing the girth, but also greatly enhance the code rate, so it is easy to construct a high-rate code. The simulation results show that at the bit error rate(BER) of 10^(-7), the net coding gain(NCG) of the regular QC-LDPC(4 851, 4 546) code is respectively 2.06 dB, 1.36 dB, 0.53 dB and 0.31 dB more than those of the classic RS(255, 239) code in ITU-T G.975, the LDPC(32 640, 30 592) code in ITU-T G.975.1, the QC-LDPC(3 664, 3 436) code constructed by the improved combining construction method based on CRT and the irregular QC-LDPC(3 843, 3 603) code constructed by the construction method based on the Galois field(GF(q)) multiplicative group. Furthermore, all these five codes have the same code rate of 0.937. Therefore, the regular QC-LDPC(4 851, 4 546) code constructed by the proposed construction method has excellent error-correction performance, and can be more suitable for optical transmission systems.
基金Supported by the JSPS Fellowship for Foreign Researchers under Grant No.24.02049
文摘The statistical physics properties of low-density parity-cheek codes for the binary symmetric channel are investigated as a spin glass problem with multi-spin interactions and quenched random fields by the cavity method. By evaluating the entropy function at the Nishimori temperature, we find that irregular constructions with heterogeneous degree distribution of check (bit) nodes have higher decoding thresholds compared to regular counterparts with homo- geneous degree distribution. We also show that the instability of the mean-field caiculation takes place only after the entropy crisis, suggesting the presence of a frozen glassy phase at low temperatures. When no prior knowledge of channel noise is assumed (searching for the ground state), we find that a reinforced strategy on normal belief propagation will boost the decoding threshold to a higher value than the normal belief propagation. This value is dose to the dynamicai transition where all local search heuristics fail to identify the true message (codeword or the ferromagnetic state). After the dynamical transition, the number of metastable states with larger energy density (than the ferromagnetic state) becomes exponentially numerous. When the noise level of the transmission channel approaches the static transition point, there starts to exist exponentiaily numerous codewords sharing the identical ferromagnetic energy.
基金supported by the National Natural Science Foundation of China(No.10477014)the Joint Found of Aeronautical Science and Technology
文摘A coded modulation scheme for deep-space optical communications is proposed, which is composed of an outer single- parity-check (SPC)-based product code, an interleaver, a bit-accumulator and a pulse-position modulation (PPM). It is referred as SPC-APPM code, which is decoded with an iterativc demodulator-decoder using standard turbo-decoding techniques. Investigations show that the scheme has the advantages of low encoding and decoding complexities, good performance and flexible code rate for all rates above I/2. Meanwhile, simulation results demonstrate that the SPC-APPM provides the performance similar to the low-density parity-check-APPM (LDPC-APPM), superior to the LDPC-PPM and product accumulate code-PPM (PA-PPM), although inferior to serially concatenated PPM (SCPPM). At the bit error rate (BER) of 105, the performance of SPC-APPM is about 0.7 dB better than LDPC-PPM and 1.2 dB better than PA-PPM.