在当前的软件开发环境中,海量的低质量、无意义的代码知识为开发人员进行代码复用造成了阻碍,大大降低了软件开发效率。为了快速准确地为开发人员推荐高质量的代码知识,提出了基于SBERT(sentence-BERT)模型的代码片段推荐方法CSRSB(code...在当前的软件开发环境中,海量的低质量、无意义的代码知识为开发人员进行代码复用造成了阻碍,大大降低了软件开发效率。为了快速准确地为开发人员推荐高质量的代码知识,提出了基于SBERT(sentence-BERT)模型的代码片段推荐方法CSRSB(code snippets recommendation based on sentence-BERT)。该方法首先获取海量的高质量数据来构建代码语料库,并基于深度学习模型SBERT为代码片段对应的自然语言描述和用户输入的自然语言查询生成具有丰富语义的句向量,通过比较点积相似度来实现代码片段的推荐。使用命中率、平均倒数排名和平均准确率这三个常用推荐评估指标与现有相关研究中的方法进行对比来验证该方法的有效性。实验结果表明,CSRSB在有效提高代码片段推荐准确度的同时也能够做到快速推荐。展开更多
文摘在当前的软件开发环境中,海量的低质量、无意义的代码知识为开发人员进行代码复用造成了阻碍,大大降低了软件开发效率。为了快速准确地为开发人员推荐高质量的代码知识,提出了基于SBERT(sentence-BERT)模型的代码片段推荐方法CSRSB(code snippets recommendation based on sentence-BERT)。该方法首先获取海量的高质量数据来构建代码语料库,并基于深度学习模型SBERT为代码片段对应的自然语言描述和用户输入的自然语言查询生成具有丰富语义的句向量,通过比较点积相似度来实现代码片段的推荐。使用命中率、平均倒数排名和平均准确率这三个常用推荐评估指标与现有相关研究中的方法进行对比来验证该方法的有效性。实验结果表明,CSRSB在有效提高代码片段推荐准确度的同时也能够做到快速推荐。