抑制性能量消耗模型(constrained model of energy expenditure,CMEE)是近年来学术界提出的用来解释人体在运动中能量供应过程或机理的新理论。该理论认为机体的能量代谢存在一种保护性机制或能耗补偿模式,即人体的活动量与能耗并不存...抑制性能量消耗模型(constrained model of energy expenditure,CMEE)是近年来学术界提出的用来解释人体在运动中能量供应过程或机理的新理论。该理论认为机体的能量代谢存在一种保护性机制或能耗补偿模式,即人体的活动量与能耗并不存在等比例关系或线性关系,并认为人体每日的能量消耗是有上限的,且越接近这个上限,身体便越会以其他方式减少能量消耗。目前,国内关于该理论尚缺乏系统性的介绍,因此本文通过梳理国内外相关文献,从抑制性能量消耗模型的理论提出背景、理论介绍和作用机制三个方面进行综述。展开更多
To examine whether metabolic compensation during seasonal acclimatization at the liver mitochondrial level is consistent with that at the whole-animal level, respiration rates of liver mitochondria and resting metabol...To examine whether metabolic compensation during seasonal acclimatization at the liver mitochondrial level is consistent with that at the whole-animal level, respiration rates of liver mitochondria and resting metabolic rates in winter- and sum- meracclimatized southern catfish (Silurus meridionalis Chen) were measured. At 12.5, 17.5, 22.5, 27.5 and 32.5~C, the mean values of state 3 respiration rates were 12.21, 13.84, 18.96, 24.78 and 32.01 nmol O2min-1 mg-1 mitochondrial protein in the winter group, and 8.56, 9.20, 17.32, 22.74 and 26.32 nmol 02 min-1 mgq in the summer group, respectively. At the five assay temperatures the resting metabolic rates were 24.86, 42.68, 61.59, 84.10 and 125.65 mg 02 h-1 kgI body mass in the winter group, and 22.89, 40.59, 52.94, 75.13 and 109.35 mg Oz h-1 kg-1 in the summer group, respectively. Total mitochondrial respiration rates in the liver organ were estimated based on state 3 respiration rates, mitochondrial protein content and organ mass, and the mean values were 72.96, 71.87, 112.47, 167.35 and 183.27 nmol Ozmin-lin the winter group, and were 47.89, 47.39, 105.67, 138.18 and 132.29 nmol 02 min-1 in the summer group, respectively. Metabolic compensation caused by seasonal acclimatization occurred at the liver mitochondrial level and compensation at the liver organ level was found to be more efficient because of an in- crease in metabolic capacity of mitochondria and a boost in organ mass. Metabolic compensation at the whole-animal level was not detected. During seasonal acclimatization, the effect of metabolic compensation at liver mitochondrial level is inconsistent with that at the whole-animal level in the southern catfish. This may be due to different degrees of regulation of metabolic mechanisms among various tissues and organs in an acclimatized organism展开更多
文摘抑制性能量消耗模型(constrained model of energy expenditure,CMEE)是近年来学术界提出的用来解释人体在运动中能量供应过程或机理的新理论。该理论认为机体的能量代谢存在一种保护性机制或能耗补偿模式,即人体的活动量与能耗并不存在等比例关系或线性关系,并认为人体每日的能量消耗是有上限的,且越接近这个上限,身体便越会以其他方式减少能量消耗。目前,国内关于该理论尚缺乏系统性的介绍,因此本文通过梳理国内外相关文献,从抑制性能量消耗模型的理论提出背景、理论介绍和作用机制三个方面进行综述。
基金Acknowledgements This study was supported by the National Natural Science Foundation of China (30371121), Natural Science Foundation of Chongqing Government (2007BA7029), and Doctoral Foundation of Southwest University, China. We are grateful to LQ Yuan, Y Kong, DF Ming and B Wu for assistance with experiments. We also thank SL Miao for comments on an earlier version of this manuscript.
文摘To examine whether metabolic compensation during seasonal acclimatization at the liver mitochondrial level is consistent with that at the whole-animal level, respiration rates of liver mitochondria and resting metabolic rates in winter- and sum- meracclimatized southern catfish (Silurus meridionalis Chen) were measured. At 12.5, 17.5, 22.5, 27.5 and 32.5~C, the mean values of state 3 respiration rates were 12.21, 13.84, 18.96, 24.78 and 32.01 nmol O2min-1 mg-1 mitochondrial protein in the winter group, and 8.56, 9.20, 17.32, 22.74 and 26.32 nmol 02 min-1 mgq in the summer group, respectively. At the five assay temperatures the resting metabolic rates were 24.86, 42.68, 61.59, 84.10 and 125.65 mg 02 h-1 kgI body mass in the winter group, and 22.89, 40.59, 52.94, 75.13 and 109.35 mg Oz h-1 kg-1 in the summer group, respectively. Total mitochondrial respiration rates in the liver organ were estimated based on state 3 respiration rates, mitochondrial protein content and organ mass, and the mean values were 72.96, 71.87, 112.47, 167.35 and 183.27 nmol Ozmin-lin the winter group, and were 47.89, 47.39, 105.67, 138.18 and 132.29 nmol 02 min-1 in the summer group, respectively. Metabolic compensation caused by seasonal acclimatization occurred at the liver mitochondrial level and compensation at the liver organ level was found to be more efficient because of an in- crease in metabolic capacity of mitochondria and a boost in organ mass. Metabolic compensation at the whole-animal level was not detected. During seasonal acclimatization, the effect of metabolic compensation at liver mitochondrial level is inconsistent with that at the whole-animal level in the southern catfish. This may be due to different degrees of regulation of metabolic mechanisms among various tissues and organs in an acclimatized organism