With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological c...With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological changes will occur, which will start self-regulation mechanisms to reduce abnormalities and help the organism to better adapt to microgravity. However, these adaptive changes may also induce degradation or damage to physiological functions. This paper summarizes the physiological effects of microgravity on the human body from the aspects of skeletal and mineral metabolism, muscle structure and function, vestibular functions, cardiovascular function and pulmonary function, as well as expounds some commonly used ground-based space analogies. The paper will provide a reference for further study on the physiological effects of microgravity.展开更多
The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina durin...The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform.We characterized the metabolic processes in D.salina with a focus on valuable metabolites, with the aim of manipulating D.salina to achieve greater economic value in large-scale production through a bioengineering strategy.Gene expression profiles under salt stress verified using quantitative polymerase chain reaction(qPCR) implied that salt can regulate the expression of key genes.This study generated a substantial fraction of D.salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes.This first full-scale transcriptome study of D.salina establishes a foundation for further comparative genomic studies.展开更多
文摘With the development of manned spaceflight, more and more researches are involved in the area of gravitation physiology. When astronauts are exposed to microgravity, a series of special physiological or pathological changes will occur, which will start self-regulation mechanisms to reduce abnormalities and help the organism to better adapt to microgravity. However, these adaptive changes may also induce degradation or damage to physiological functions. This paper summarizes the physiological effects of microgravity on the human body from the aspects of skeletal and mineral metabolism, muscle structure and function, vestibular functions, cardiovascular function and pulmonary function, as well as expounds some commonly used ground-based space analogies. The paper will provide a reference for further study on the physiological effects of microgravity.
基金Project supported by the National High-Tech R&D Program(863)of China(No.2007AA09Z449)
文摘The unicellular green alga Dunaliella salina is well adapted to salt stress and contains compounds(including β-carotene and vitamins) with potential commercial value.A large transcriptome database of D.salina during the adjustment, exponential and stationary growth phases was generated using a high throughput sequencing platform.We characterized the metabolic processes in D.salina with a focus on valuable metabolites, with the aim of manipulating D.salina to achieve greater economic value in large-scale production through a bioengineering strategy.Gene expression profiles under salt stress verified using quantitative polymerase chain reaction(qPCR) implied that salt can regulate the expression of key genes.This study generated a substantial fraction of D.salina transcriptional sequences for the entire growth cycle, providing a basis for the discovery of novel genes.This first full-scale transcriptome study of D.salina establishes a foundation for further comparative genomic studies.