为了降低超密集网络中小区间的干扰,提升频谱效率,给出一种在以用户为中心的可重叠虚拟小区场景下,基于边权重和贪婪树增长(Greedy Tree Growing Algorithm,GTGA)算法的用户分簇方案。考虑到每个用户对其他用户产生干扰的同时,又受到其...为了降低超密集网络中小区间的干扰,提升频谱效率,给出一种在以用户为中心的可重叠虚拟小区场景下,基于边权重和贪婪树增长(Greedy Tree Growing Algorithm,GTGA)算法的用户分簇方案。考虑到每个用户对其他用户产生干扰的同时,又受到其他用户的干扰,权重设计采用协作传输的平衡策略。针对用户分簇,改进的K-means聚类算法通过能够拟合高斯分布的权重统计量来动态调整用户分群的大小。仿真结果表明,所提算法能有效地降低复杂度,减少干扰,提高超密集网络的频谱效率。展开更多
针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,...针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。展开更多
文摘为了降低超密集网络中小区间的干扰,提升频谱效率,给出一种在以用户为中心的可重叠虚拟小区场景下,基于边权重和贪婪树增长(Greedy Tree Growing Algorithm,GTGA)算法的用户分簇方案。考虑到每个用户对其他用户产生干扰的同时,又受到其他用户的干扰,权重设计采用协作传输的平衡策略。针对用户分簇,改进的K-means聚类算法通过能够拟合高斯分布的权重统计量来动态调整用户分群的大小。仿真结果表明,所提算法能有效地降低复杂度,减少干扰,提高超密集网络的频谱效率。
文摘针对超密集网络系统提出了一种改进的基于密度噪声应用空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法的干扰抑制方法。基站利用附加判断门限条件而改进DBSCAN聚类算法,并对小区里的用户进行分组,将具有相似信道特性的用户聚成一组,使不同分组用户之间的信道相关性较低。再利用比例公平调度选出每组中比例公平系数最高的用户进行传输,调度后的多个用户的空间特性不同的,从而降低空间干扰起到干扰抑制的效果。仿真结果表明,与其他相关2种方法比较,改进方法可有效地降低空间干扰,提高系统吞吐量。