许多用多阶段实验①数据检验的经济学关系本身是一种动态的关系,理应用动态方法建模.面板数据的时间维度使我们有机会掌握经济行为调整的动态过程.在这样的数据结构下,普通最小二乘法、随机影响和固定影响的估测方法导致有偏的和不一致...许多用多阶段实验①数据检验的经济学关系本身是一种动态的关系,理应用动态方法建模.面板数据的时间维度使我们有机会掌握经济行为调整的动态过程.在这样的数据结构下,普通最小二乘法、随机影响和固定影响的估测方法导致有偏的和不一致的参数估计.在本文中,我们分析了一系列一价共同价值拍卖(first price common value auction)实验的数据.我们采用的动态面板数据估计法能作出无偏一致的参数估计.通过研究没有经验和经验丰富的竞价者如何在各自的实验过程中调整竞价策略,我们发现,经验丰富的竞价者会因前期的实际损失调整他们的竞价策略(折现率),但是其他形式的信息反馈对他们没有明显的影响,而无经验竞价者的竞价策略会受各种反馈信息的影响,且往往比经验丰富的竞价者反映更强.最后,经验丰富的和无经验的竞价者都在策略调整中基本忽视以前的经验(竞价策略).展开更多
In sequential auctions the phenomenon of declining prices is often observed, which in theory can be represented by a supermartingale. This paper employs the perspective that bidders' values may change over stages ...In sequential auctions the phenomenon of declining prices is often observed, which in theory can be represented by a supermartingale. This paper employs the perspective that bidders' values may change over stages and the common priors are sequentially adjusted by the remaining bidders. It is shown that the declining price sequence can be explained by the adjustment of common priors between auctions. The adjustment of common priors is characterized by stochastic orders. Sufficient and necessary conditions for a supermartingale price sequence are derived.展开更多
文摘许多用多阶段实验①数据检验的经济学关系本身是一种动态的关系,理应用动态方法建模.面板数据的时间维度使我们有机会掌握经济行为调整的动态过程.在这样的数据结构下,普通最小二乘法、随机影响和固定影响的估测方法导致有偏的和不一致的参数估计.在本文中,我们分析了一系列一价共同价值拍卖(first price common value auction)实验的数据.我们采用的动态面板数据估计法能作出无偏一致的参数估计.通过研究没有经验和经验丰富的竞价者如何在各自的实验过程中调整竞价策略,我们发现,经验丰富的竞价者会因前期的实际损失调整他们的竞价策略(折现率),但是其他形式的信息反馈对他们没有明显的影响,而无经验竞价者的竞价策略会受各种反馈信息的影响,且往往比经验丰富的竞价者反映更强.最后,经验丰富的和无经验的竞价者都在策略调整中基本忽视以前的经验(竞价策略).
基金supported by Beijing Higher Education Young Elite Teacher Project(YETP0964)the National Natural Science Foundation of China under Grant Nos.71171053 and 71473282+1 种基金211 Projects FoundationProjects from School of Economics at Central University of Finance and Economics
文摘In sequential auctions the phenomenon of declining prices is often observed, which in theory can be represented by a supermartingale. This paper employs the perspective that bidders' values may change over stages and the common priors are sequentially adjusted by the remaining bidders. It is shown that the declining price sequence can be explained by the adjustment of common priors between auctions. The adjustment of common priors is characterized by stochastic orders. Sufficient and necessary conditions for a supermartingale price sequence are derived.