电子病历(Electronic medical records,EMR)产生于临床治疗过程,其中命名实体和实体关系反映了患者健康状况,包含了大量与患者健康状况密切相关的医疗知识,因而对它们的识别和抽取是信息抽取研究在医疗领域的重要扩展.本文首先讨论了电...电子病历(Electronic medical records,EMR)产生于临床治疗过程,其中命名实体和实体关系反映了患者健康状况,包含了大量与患者健康状况密切相关的医疗知识,因而对它们的识别和抽取是信息抽取研究在医疗领域的重要扩展.本文首先讨论了电子病历文本的语言特点和结构特点,然后在梳理了命名实体识别和实体关系抽取研究一般思路的基础上,分析了电子病历命名实体识别、实体修饰识别和实体关系抽取研究的具体任务和对应任务的主要研究方法.本文还介绍了相关的共享评测任务和标注语料库以及医疗领域几个重要的词典和知识库等资源.最后对这一研究领域仍需解决的问题和未来的发展方向作了展望.展开更多
This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature repr...This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.展开更多
文摘电子病历(Electronic medical records,EMR)产生于临床治疗过程,其中命名实体和实体关系反映了患者健康状况,包含了大量与患者健康状况密切相关的医疗知识,因而对它们的识别和抽取是信息抽取研究在医疗领域的重要扩展.本文首先讨论了电子病历文本的语言特点和结构特点,然后在梳理了命名实体识别和实体关系抽取研究一般思路的基础上,分析了电子病历命名实体识别、实体修饰识别和实体关系抽取研究的具体任务和对应任务的主要研究方法.本文还介绍了相关的共享评测任务和标注语料库以及医疗领域几个重要的词典和知识库等资源.最后对这一研究领域仍需解决的问题和未来的发展方向作了展望.
基金Project(51678075)supported by the National Natural Science Foundation of ChinaProject(2017GK2271)supported by Hunan Provincial Science and Technology Department,China
文摘This paper proposed a novel multi-view interactive behavior recognition method based on local self-similarity descriptors and graph shared multi-task learning. First, we proposed the composite interactive feature representation which encodes both the spatial distribution of local motion of interest points and their contexts. Furthermore, local self-similarity descriptor represented by temporal-pyramid bag of words(BOW) was applied to decreasing the influence of observation angle change on recognition and retaining the temporal information. For the purpose of exploring latent correlation between different interactive behaviors from different views and retaining specific information of each behaviors, graph shared multi-task learning was used to learn the corresponding interactive behavior recognition model. Experiment results showed the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases CASIA, i3Dpose dataset and self-built database for interactive behavior recognition.