期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于UML的战役弹药保障任务测算软件建模研究
1
作者 胡睿 刘春成 王平 《舰船电子工程》 2009年第11期111-114,共4页
为实现战役弹药保障任务测算工作的正规化与自动化,利用运筹学方法和计算机技术建立弹药保障任务测算软件保障任务测算软件模型。结合现代软件辅助设计工具Powerdesigner,使用UML语言,对战役弹药保障工作流程进行建模分析,为其建立基于... 为实现战役弹药保障任务测算工作的正规化与自动化,利用运筹学方法和计算机技术建立弹药保障任务测算软件保障任务测算软件模型。结合现代软件辅助设计工具Powerdesigner,使用UML语言,对战役弹药保障工作流程进行建模分析,为其建立基于用例图、类图、时序图和活动图的系统静态模型和动态模型。模型重点围绕战役各阶段的物资保障需求、保障强度,制定储备标准、消耗限额、补充方案,能够较为简便地应用于多种后勤和军械物资的战时保障,具有较强的通用性。 展开更多
关键词 弹药保障 战役 任务测算 建模
下载PDF
面向装备维修保障任务测算的“损坏单元”分析与设计 被引量:1
2
作者 李明雨 高鲁 许宏伟 《火炮发射与控制学报》 北大核心 2022年第3期85-90,共6页
随着战争形态和作战样式的复杂变化,战时装备维修保障变得愈加重要。针对装备维修保障任务测算精度不高、方法适应性不强的问题,采用5W2H法,从研究原因、客体内容、地点环境、时间阶段、人为因素、思路方法、验证应用7个层面对战时装备... 随着战争形态和作战样式的复杂变化,战时装备维修保障变得愈加重要。针对装备维修保障任务测算精度不高、方法适应性不强的问题,采用5W2H法,从研究原因、客体内容、地点环境、时间阶段、人为因素、思路方法、验证应用7个层面对战时装备维修保障任务测算进行了全面的系统分析,从而找到任务测算的新路径和基准。以集团军为例,基于“3个提升”起源和“5个一致”原则,自上而下论证“损坏单元”体系,实现“3个统筹”效果,以便于装备维修保障组织实施和方法的广泛运用,利于维修保障理论体系的综合集成、整体优化,为装备维修保障任务测算研究提供新思路。 展开更多
关键词 战时 装备维修保障 任务测算 5W2H法 基准 损坏单元
下载PDF
基于ISM的合成旅战时装备维修保障任务测算影响因素分析
3
作者 李明雨 高鲁 许宏伟 《军事交通学报》 2022年第2期33-37,共5页
为提高合成旅装备维修保障任务测算精准度,从相关概念入手,遵循影响因素确定的基本原则,运用解释结构模型法(ISM)对其装备维修保障任务测算的影响因素进行层次分析,从基于作战任务、装备运用、作战对手、战场环境视角确定相应的关键因素... 为提高合成旅装备维修保障任务测算精准度,从相关概念入手,遵循影响因素确定的基本原则,运用解释结构模型法(ISM)对其装备维修保障任务测算的影响因素进行层次分析,从基于作战任务、装备运用、作战对手、战场环境视角确定相应的关键因素,为其赋权量化研究奠定基础,明确部队战时应对举措的优先级,为装备保障的组织筹划和降低损耗提供参考。 展开更多
关键词 装备维修保障 任务测算 解释结构模型法 层次分析
下载PDF
战时装备维修保障任务测算综述
4
作者 李明雨 高鲁 许宏伟 《军事交通学报》 2022年第6期32-36,共5页
为科学筹划维修保障资源和维修保障方案,提高装备战时维修任务测算的精度,对国内外装备损坏预测及维修保障任务测算的相关研究进行综述,指出当前装备维修保障任务测算存在的问题,对战时装备维修保障任务测算的发展趋势进行展望,为战时... 为科学筹划维修保障资源和维修保障方案,提高装备战时维修任务测算的精度,对国内外装备损坏预测及维修保障任务测算的相关研究进行综述,指出当前装备维修保障任务测算存在的问题,对战时装备维修保障任务测算的发展趋势进行展望,为战时装备维修保障筹划及实施提供依据和参考。 展开更多
关键词 战时装备维修保障 损坏预测 任务测算
下载PDF
战时车辆装备维修任务量测算模型 被引量:4
5
作者 赵劲松 令狐昌应 贺宇 《军事交通学院学报》 2016年第6期27-31,共5页
通过战时车辆装备维修保障任务的分析,明确了维修任务量生成逻辑,形成了各类维修任务量关系结构,构建了战时车辆动用量预计模型和维修任务量测算模型,实例分析验证了模型的有效性,模型可为战时车辆保障辅助决策提供支持。
关键词 车辆装备 战时维修 任务测算
下载PDF
Parallel Test Tasks Scheduling and Resources Configuration Based on GA-ACA 被引量:3
6
作者 方甲永 薛辉辉 肖明清 《Journal of Measurement Science and Instrumentation》 CAS 2011年第4期321-326,共6页
A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With t... A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration. 展开更多
关键词 parallel test Genetic Algorithm-Ant Colony Algo-rithm GA-ACA cost efficiency multi-UnitUnder Test UUT resources configuration tasks scheduling
下载PDF
Characteristics of Rainfall Erosivity Based on Tropical Rainfall Measuring Mission Data in Tibet, China 被引量:7
7
作者 FAN Jian-rong CHEN Yang +1 位作者 YAN Dong GUO Fen-fen 《Journal of Mountain Science》 SCIE CSCD 2013年第6期1008-1017,共10页
Rainfall erosivity in Tibet from 2000 to 2OlO was estimated based on simplified erosion prediction model using daily rainfall data derived from the Tropical Rainfall Measurement Misssion (TRMM) 3B42 rainfall measure... Rainfall erosivity in Tibet from 2000 to 2OlO was estimated based on simplified erosion prediction model using daily rainfall data derived from the Tropical Rainfall Measurement Misssion (TRMM) 3B42 rainfall measurement algorithm. Semi- monthly erosive rainfall and rainfall erosivity were validated using weather station data. The spatial distribution of annual rainfall erosivity as well as its seasonal and annual variation in Tibet was also examined. Results showed that TRMM 3B42 data could serve as an alternative data source to estimate rainfall erosivity in the area where only data from sparsely distributed weather stations are available. The spatial distribution of rainfall erosivity in Tibet generally resembles the distribution of multi-year average of annual rainfall. Annual rainfall erosivity in Tibet decreased from the southeast to the northwest. The concentration degree of rainfall erosivity shows an increasing trend from the southeast to the northwest. High rainfall erosivity accompanies low rainfall erosivity concentration degree and vice versa. Rainfall erosivity increased in the middle and western Tibet and decreased in the southeastern Tibet during the 11 years of this study. 展开更多
关键词 Rainfall erosivity TRMM 3B42 data TIBET Temporal distribution Spatial distribution
下载PDF
Layer-wise domain correction for unsupervised domain adaptation 被引量:1
8
作者 Shuang LI Shi-ji SONG Cheng WU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第1期91-103,共13页
Deep neural networks have been successfully applied to numerous machine learning tasks because of their impressive feature abstraction capabilities.However,conventional deep networks assume that the training and test ... Deep neural networks have been successfully applied to numerous machine learning tasks because of their impressive feature abstraction capabilities.However,conventional deep networks assume that the training and test data are sampled from the same distribution,and this assumption is often violated in real-world scenarios.To address the domain shift or data bias problems,we introduce layer-wise domain correction(LDC),a new unsupervised domain adaptation algorithm which adapts an existing deep network through additive correction layers spaced throughout the network.Through the additive layers,the representations of source and target domains can be perfectly aligned.The corrections that are trained via maximum mean discrepancy,adapt to the target domain while increasing the representational capacity of the network.LDC requires no target labels,achieves state-of-the-art performance across several adaptation benchmarks,and requires significantly less training time than existing adaptation methods. 展开更多
关键词 Unsupervised domain adaptation Maximum mean discrepancy Residual network Deep learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部