The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocat...This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).展开更多
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
基金supported by the National Natural Science Foundation of China(Grant No.11402295)the Science Project of National University of Defense Technology(Grant No.JC14-01-05)the Hunan Provincial Natural Science Foundation of China(Grant No.2015JJ3020)
文摘This paper studies the multi-objective optimization of space station short-term mission planning(STMP), which aims to obtain a mission-execution plan satisfying multiple planning demands. The planning needs to allocate the execution time effectively, schedule the on-board astronauts properly, and arrange the devices reasonably. The STMP concept models for problem definitions and descriptions are presented, and then an STMP multi-objective planning model is developed. To optimize the STMP problem, a Non-dominated Sorting Genetic Algorithm II(NSGA-II) is adopted and then improved by incorporating an iterative conflict-repair strategy based on domain knowledge. The proposed approach is demonstrated by using a test case with thirty-five missions, eighteen devices and three astronauts. The results show that the established STMP model is effective, and the improved NSGA-II can successfully obtain the multi-objective optimal plans satisfying all constraints considered. Moreover, through contrast tests on solving the STMP problem, the NSGA-II shows a very competitive performance with respect to the Strength Pareto Evolutionary Algorithm II(SPEA-II) and the Multi-objective Particle Swarm Optimization(MOPSO).