Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,...Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.展开更多
In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower...In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.展开更多
A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With t...A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.展开更多
In order to solve the hybrid and dependent task scheduling and critical source allocation problems, a task scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid and depe...In order to solve the hybrid and dependent task scheduling and critical source allocation problems, a task scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid and dependent scheduling algorithm and deriving the predictable schedulability condition. The performance of this agorithm was evaluated through simulation, and it is concluded from the evaluation results that the hybrid task scheduling subalgorithm based on the comparison factor can be used to solve the problem of aperiodic task being blocked by periodic task in the traditional operating system for a very long time, which results in poor scheduling predictability; and the resource allocation subalgorithm based on schedulability analysis can be used to solve the problems of critical section conflict, ceiling blocking and priority inversion; and the scheduling algorithm is nearest optimal when the abortable critical section is 0.6.展开更多
Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The ta...Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The task assignment problem in HC environment can be formally defined as for a given set of tasks and machines, assigning tasks to machines to achieve the minimum makespan. In this paper we propose a new task scheduling heuristic, high standard deviation first (HSTDF), which considers the standard deviation of the expected execution time of a task as a selection criterion. Standard deviation of the ex- pected execution time of a task represents the amount of variation in task execution time on different machines. Our conclusion is that tasks having high standard deviation must be assigned first for scheduling. A large number of experiments were carried out to check the effectiveness of the proposed heuristic in different scenarios, and the comparison with the existing heuristics (Max-min, Sufferage, Segmented Min-average, Segmented Min-min, and Segmented Max-min) clearly reveals that the proposed heuristic outperforms all existing heuristics in terms of average makespan.展开更多
Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we re...Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.展开更多
基金ACKNOWLEDGEMENTS The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. The research has been partly supported by National Natural Science Foundation of China No. 61272528 and No. 61034005, and the Central University Fund (ID-ZYGX2013J073).
文摘Many Task Computing(MTC)is a new class of computing paradigm in which the aggregate number of tasks,quantity of computing,and volumes of data may be extremely large.With the advent of Cloud computing and big data era,scheduling and executing large-scale computing tasks efficiently and allocating resources to tasks reasonably are becoming a quite challenging problem.To improve both task execution and resource utilization efficiency,we present a task scheduling algorithm with resource attribute selection,which can select the optimal node to execute a task according to its resource requirements and the fitness between the resource node and the task.Experiment results show that there is significant improvement in execution throughput and resource utilization compared with the other three algorithms and four scheduling frameworks.In the scheduling algorithm comparison,the throughput is 77%higher than Min-Min algorithm and the resource utilization can reach 91%.In the scheduling framework comparison,the throughput(with work-stealing)is at least 30%higher than the other frameworks and the resource utilization reaches 94%.The scheduling algorithm can make a good model for practical MTC applications.
基金Project(2017YFB1301104)supported by the National Key Research and Development Program of ChinaProjects(61906212,61802426)supported by the National Natural Science Foundation of China。
文摘In this paper,we consider a multi-UAV surveillance scenario where a team of unmanned aerial vehicles(UAVs)synchronously covers an area for monitoring the ground conditions.In this scenario,we adopt the leader-follower control mode and propose a modified Lyapunov guidance vector field(LGVF)approach for improving the precision of surveillance trajectory tracking.Then,in order to adopt to poor communication conditions,we propose a prediction-based synchronization method for keeping the formation consistently.Moreover,in order to adapt the multi-UAV system to dynamic and uncertain environment,this paper proposes a hierarchical dynamic task scheduling architecture.In this architecture,we firstly classify all the algorithms that perform tasks according to their functions,and then modularize the algorithms based on plugin technology.Afterwards,integrating the behavior model and plugin technique,this paper designs a three-layer control flow,which can efficiently achieve dynamic task scheduling.In order to verify the effectiveness of our architecture,we consider a multi-UAV traffic monitoring scenario and design several cases to demonstrate the online adjustment from three levels,respectively.
基金supported by“11th Five-year Projects”pre-research projects fund of the National Arming Department
文摘A Genetic Algorithm-Ant Colony Algorithm(GA-ACA),which can be used to optimize multi-Unit Under Test(UUT)parallel test tasks sequences and resources configuration quickly and accurately,is proposed in the paper.With the establishment of the mathematic model of multi-UUT parallel test tasks and resources,the condition of multi-UUT resources mergence is analyzed to obtain minimum resource requirement under minimum test time.The definition of cost efficiency is put forward,followed by the design of gene coding and path selection project,which can satisfy multi-UUT parallel test tasks scheduling.At the threshold of the algorithm,GA is adopted to provide initial pheromone for ACA,and then dual-convergence pheromone feedback mode is applied in ACA to avoid local optimization and parameters dependence.The practical application proves that the algorithm has a remarkable effect on solving the problems of multi-UUT parallel test tasks scheduling and resources configuration.
文摘In order to solve the hybrid and dependent task scheduling and critical source allocation problems, a task scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid and dependent scheduling algorithm and deriving the predictable schedulability condition. The performance of this agorithm was evaluated through simulation, and it is concluded from the evaluation results that the hybrid task scheduling subalgorithm based on the comparison factor can be used to solve the problem of aperiodic task being blocked by periodic task in the traditional operating system for a very long time, which results in poor scheduling predictability; and the resource allocation subalgorithm based on schedulability analysis can be used to solve the problems of critical section conflict, ceiling blocking and priority inversion; and the scheduling algorithm is nearest optimal when the abortable critical section is 0.6.
基金Project supported by the National Natural Science Foundation of China (No. 60703012)the National Basic Research Program (973) of China (No. 2006CB303000)the Heilongjiang Provincial Scientific and Technological Special Fund for Young Scholars (No. QC06C033),China
文摘Heterogeneous computing (HC) environment utilizes diverse resources with different computational capabilities to solve computing-intensive applications having diverse computational requirements and constraints. The task assignment problem in HC environment can be formally defined as for a given set of tasks and machines, assigning tasks to machines to achieve the minimum makespan. In this paper we propose a new task scheduling heuristic, high standard deviation first (HSTDF), which considers the standard deviation of the expected execution time of a task as a selection criterion. Standard deviation of the ex- pected execution time of a task represents the amount of variation in task execution time on different machines. Our conclusion is that tasks having high standard deviation must be assigned first for scheduling. A large number of experiments were carried out to check the effectiveness of the proposed heuristic in different scenarios, and the comparison with the existing heuristics (Max-min, Sufferage, Segmented Min-average, Segmented Min-min, and Segmented Max-min) clearly reveals that the proposed heuristic outperforms all existing heuristics in terms of average makespan.
文摘Real-time task scheduling is of primary significance in multiprocessor systems.Meeting deadlines and achieving high system utilization are the two main objectives of task scheduling in such systems.In this paper,we represent those two goals as the minimization of the average response time and the average task laxity.To achieve this,we propose a genetic-based algorithm with problem-specific and efficient genetic operators.Adaptive control parameters are also employed in our work to improve the genetic algorithms' efficiency.The simulation results show that our proposed algorithm outperforms its counterpart considerably by up to 36% and 35% in terms of the average response time and the average task laxity,respectively.