The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional...The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.展开更多
The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the trans...The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the transfer trajectory is designed using △VEGA technology for the asteroid rendezvous. The design resultssatisfied the energy requirements for small explorers.展开更多
Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicabilit...Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.展开更多
The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit...The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit.The Moon departure mission for the lunar probe is the focus of this paper.The possibility of the spacecraft orbiting the Moon to escape the Moon's gravitational pull is analyzed.The trajectory design for the Earth-Moon system libration point mission is studied in a full ephemeris dynamical model,which considers the non-uniform motion of the Moon around the Earth,the gravity of the Sun and planets and the finite thrust of the onboard engine.By applying the Particle Swarm Optimization algorithm,the trajectory design for the transfer from the Moon-centered orbit to the L1 halo orbit,the station-keeping strategies for the Earth-Moon halo orbit and the construction of homoclinic and heteroclinic orbits are investigated.Taking the tracking conditions and engineering constraints into account,two feasible schemes for the Moon departure libration point mission for the lunar probe are presented.展开更多
An integrated nonlinear planning(NLP) model is built for space station long-duration orbital missions considering both the vehicle visiting schedules and the interaction effects between target phasing,vehicle return a...An integrated nonlinear planning(NLP) model is built for space station long-duration orbital missions considering both the vehicle visiting schedules and the interaction effects between target phasing,vehicle return adjusting and Earth observation aiming.A two-level optimization approach is proposed to solve this complicated problem.The up-level problem employs the launch times of visiting vehicles as design variables,considers the constraints of crew rotations,resource resupplies and rendezvous launch windows,and is solved by a genetic algorithm.The low-level problems employ the maneuver impulses and burn times within each orbital mission as design variables,and a high-efficient shooting iteration method is proposed based on an analytical equation for the phase angle correction considering the J 2 perturbation.The results indicate that the integrated NLP model for space station long-duration orbital missions is effective,and the proposed optimization approach can obtain the optimal solutions that satisfy the multiple constraints and reduce the total propellant consumption.展开更多
基金Project(A1420060159) supported by the National Basic Research of China projects(60234030 60404021) supported bythe National Natural Science Foundation of China
文摘The problem of allocating a number of exploration tasks to a team of mobile robots in dynamic environments was studied. The team mission is to visit several distributed targets. The path cost of target is proportional to the distance that a robot has to move to visit the target. The team objective is to minimize the average path cost of target over all targets. Finding an optimal allocation is strongly NP-hard. The proposed algorithm can produce a near-optimal solution to it. The allocation can be cast in terms of a multi-round single-item auction by which robots bid on targets. In each auction round, one target is assigned to a robot that produces the lowest path cost of the target. The allocated targets form a forest where each tree corresponds a robot’s exploring targets set. Each robot constructs an exploring path through depth-first search in its target tree. The time complexity of the proposed algorithm is polynomial. Simulation experiments show that the allocating method is valid.
文摘The asteroid exploration opportunities are searched and calculated with launch dates in 2006 to2010, and with asteroid Ivar 1627 as the target, the spacecraft and its subsystems are designed and analyzed,and the transfer trajectory is designed using △VEGA technology for the asteroid rendezvous. The design resultssatisfied the energy requirements for small explorers.
文摘Electrodynamic tethered deorbit technology is a novel way to remove abandoned spacecrafts like upper stages or unusable satellites. This paper investigates and analyses the deorbit performance and mission applicability of the electrodynamic tethered system. To do so, the electrodynamic tethered deorbit dynamics with multi-perturbation is firstly formulated, where the Earth magnetic field, the atmospheric drag, and the Earth oblateness effect are considered. Then, the key system parameters, including payload mass, tether length and tether type, are analyzed by numerical simulations to investigate their influences on the deorbit performance and to give the setting principles for choosing system parameters. Based on this and given an appropriate group of system parameters, numerical simulations are undertaken to study the impact of the mission parameters, including orbit height and orbit inclination, and thus to investigate the mission applicability of the electrodynamic tethered deorbit technology.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832004 and 11072122)
文摘The lunar probe may still have some remaining fuel after completing its predefined Moon exploration mission and is able to carry out some additional scientific or technological tasks after escaping from the Moon orbit.The Moon departure mission for the lunar probe is the focus of this paper.The possibility of the spacecraft orbiting the Moon to escape the Moon's gravitational pull is analyzed.The trajectory design for the Earth-Moon system libration point mission is studied in a full ephemeris dynamical model,which considers the non-uniform motion of the Moon around the Earth,the gravity of the Sun and planets and the finite thrust of the onboard engine.By applying the Particle Swarm Optimization algorithm,the trajectory design for the transfer from the Moon-centered orbit to the L1 halo orbit,the station-keeping strategies for the Earth-Moon halo orbit and the construction of homoclinic and heteroclinic orbits are investigated.Taking the tracking conditions and engineering constraints into account,two feasible schemes for the Moon departure libration point mission for the lunar probe are presented.
基金supported by the National Natural Science Foundation of China(Grant No.11222215)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201171)
文摘An integrated nonlinear planning(NLP) model is built for space station long-duration orbital missions considering both the vehicle visiting schedules and the interaction effects between target phasing,vehicle return adjusting and Earth observation aiming.A two-level optimization approach is proposed to solve this complicated problem.The up-level problem employs the launch times of visiting vehicles as design variables,considers the constraints of crew rotations,resource resupplies and rendezvous launch windows,and is solved by a genetic algorithm.The low-level problems employ the maneuver impulses and burn times within each orbital mission as design variables,and a high-efficient shooting iteration method is proposed based on an analytical equation for the phase angle correction considering the J 2 perturbation.The results indicate that the integrated NLP model for space station long-duration orbital missions is effective,and the proposed optimization approach can obtain the optimal solutions that satisfy the multiple constraints and reduce the total propellant consumption.