In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered ina...In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered inadequate in the analysis of military operative problems in presence of a self-attrition behavior from one of the involved parts. In this paper a traditional algorithm for measuring military power is implemented and analyzed and then we improve this traditional algorithm on the basis of the kind of degradation that systematically takes place in self-destructive systems. In terms of traditional analysis, the evolution of a war is essentially an unreal sequence of repetitive cycles. So a time-dependent function was introduced in improved the algorithm. The development of this tool of prediction has the aim to argue the management of taking decisions in this type of crisis and complements itself with historical arguments or references of rigor. A computer software show results that allows to estimate the costs of the support and to visualize the graphs associated with the degradation of the system and his temporary evolution. The improved algorithm is more suitable than the traditional one in software simulations.展开更多
This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such ...This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such a problem with polynomial interpolation models instead of the objective function in trust region subproblem. Combined with both trust region strategy and line search technique, at each iteration, the affine scaling derivative-free trust region subproblem generates a backtracking direction in order to obtain a new accepted interior feasible step. Global convergence and fast local convergence properties are established under some reasonable conditions. Some numerical results are also given to show the effectiveness of the proposed algorithm.展开更多
文摘In the evaluation of the necessary measurement of aeronautical means to face to a certain military operative problem, the development of an appropriate tool is of importance. Conventional techniques are considered inadequate in the analysis of military operative problems in presence of a self-attrition behavior from one of the involved parts. In this paper a traditional algorithm for measuring military power is implemented and analyzed and then we improve this traditional algorithm on the basis of the kind of degradation that systematically takes place in self-destructive systems. In terms of traditional analysis, the evolution of a war is essentially an unreal sequence of repetitive cycles. So a time-dependent function was introduced in improved the algorithm. The development of this tool of prediction has the aim to argue the management of taking decisions in this type of crisis and complements itself with historical arguments or references of rigor. A computer software show results that allows to estimate the costs of the support and to visualize the graphs associated with the degradation of the system and his temporary evolution. The improved algorithm is more suitable than the traditional one in software simulations.
基金supported by the National Science Foundation of China under Grant No.11371253
文摘This paper proposes an arlene scaling derivative-free trust region method with interior backtracking technique for bounded-constrained nonlinear programming. This method is designed to get a stationary point for such a problem with polynomial interpolation models instead of the objective function in trust region subproblem. Combined with both trust region strategy and line search technique, at each iteration, the affine scaling derivative-free trust region subproblem generates a backtracking direction in order to obtain a new accepted interior feasible step. Global convergence and fast local convergence properties are established under some reasonable conditions. Some numerical results are also given to show the effectiveness of the proposed algorithm.