建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。...建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。以超像素块作为测试样本,使用AIDH学习方法作为CRF一元势函数,生成初始类别标签。采用Potts模型构建CRF的二元势函数进行标签的再学习,平滑目标邻域信息,解决目标检测中的漏判问题。最后,使用基于凸壳边界的方法生成最小外接目标框作为目标检测结果。实验表明,本文方法在目标检测的精度和效率上取得了较好的平衡。展开更多
文摘建立了一种结合仿射不变离散哈希(Affined-invariant discrete hashing,AIDH)和条件随机场(Confidential random field,CRF)的模型,实现遥感图像的目标检测。对遥感图像进行超像素分割,构建适用于CRF的以超像素块为顶点的无向图结构。以超像素块作为测试样本,使用AIDH学习方法作为CRF一元势函数,生成初始类别标签。采用Potts模型构建CRF的二元势函数进行标签的再学习,平滑目标邻域信息,解决目标检测中的漏判问题。最后,使用基于凸壳边界的方法生成最小外接目标框作为目标检测结果。实验表明,本文方法在目标检测的精度和效率上取得了较好的平衡。