针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)...针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)机制进行改进,用于生成新的特征描述子,并通过定义阈值评估策略对图像特征点进行匹配,从而生成了初始匹配点;然后,引入Delaunay三角网,对初始匹配点进行聚类,以获取匹配三角形,将三角形以外的无效特征点剔除;最后,引入仿射不变几何约束,对匹配三角形进行细化,通过细化的匹配三角形获取最终的匹配特征点,有效剔除误配点,进一步提高配准精度。仿真结果表明,与当前图像匹配算法相比,所提算法具有更好的鲁棒性,且其具有更佳的匹配精度与效率,有效剔除了误配点。展开更多
在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征...在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征点检测,并在算法粗匹配结果的基础上剔除不符合图像几何特性的部分外点。最后,利用仿射不变性约束筛选出精确匹配点。实验表明,该方法可有效提高算法匹配质量且执行时间短,对于不同模糊度和曝光度的图像匹配均具有很好的鲁棒性。展开更多
文摘针对当前图像匹配方法的鲁棒性差、误配率较高及效率较低等不足,提出了基于三角网下的仿射不变几何约束的图像匹配算法。在尺度空间上通过Hessian矩阵对特征点进行检测,利用子块的三角特征与对角特征SURF(speeded up robust features)机制进行改进,用于生成新的特征描述子,并通过定义阈值评估策略对图像特征点进行匹配,从而生成了初始匹配点;然后,引入Delaunay三角网,对初始匹配点进行聚类,以获取匹配三角形,将三角形以外的无效特征点剔除;最后,引入仿射不变几何约束,对匹配三角形进行细化,通过细化的匹配三角形获取最终的匹配特征点,有效剔除误配点,进一步提高配准精度。仿真结果表明,与当前图像匹配算法相比,所提算法具有更好的鲁棒性,且其具有更佳的匹配精度与效率,有效剔除了误配点。
文摘在计算机视觉领域,图像匹配是一个核心问题。为了提高图像特征点匹配算法的准确度,增强算法的抗干扰能力,针对ORB(oriented FAST and rotated BRIEF)算法的不足,提出一种改进的图像特征点匹配算法。该算法通过设置自适应阈值来进行特征点检测,并在算法粗匹配结果的基础上剔除不符合图像几何特性的部分外点。最后,利用仿射不变性约束筛选出精确匹配点。实验表明,该方法可有效提高算法匹配质量且执行时间短,对于不同模糊度和曝光度的图像匹配均具有很好的鲁棒性。