Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving...Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.展开更多
We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the...We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.展开更多
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(20936004)
文摘Industrial ecological system is a sustainable mode of modern industry development. Industrial symbiosis, a sub-field of industrial ecology, engages traditionally separate industries in a collective approach, involving exchange of materials, energy, water, and/or by-products, to enhance competitive ability and environmental performance. To construct a symbiosis analysis method, this article employs a number of parameters embodying information about materials, energy and economics as the main essential parameters in system analysis and introduces symbiosis profit and symbiotic consumption elements as the economic indicators. A modeling and simulation program is designed using the agent-based modeling approach to simulate the evolvement of a hypothetical coal-based industrial system and the change of symbiosis conditions in the process of construction is examined. The simulation program built using the Swarm library, which is a freely available multi-agent simulation package, provides a useful demonstration for the symbiosis analysis method.
基金Supported by the National Basic Research Program of China(2012CB720500)the National Natural Science Foundation of China(U1162121)
文摘We have developed a process model to simulate the behavior of an industrial-scale pressurized Lurgi fixed-bed coal gasifier using Aspen Plus and General Algebraic Modeling System(GAMS). Reaction characteristics in the fixed-bed gasifier comprising four sequential reaction zones—drying, pyrolysis, combustion and gasification are respectively modeled. A non-linear programming(NLP) model is developed for the pyrolysis zone to estimate the products composition which includes char, coal gases and distillable liquids. A four-stage model with restricted equilibrium temperature is used to study the thermodynamic equilibrium characteristics and calculate the composition of syngas in the combustion and gasification zones. The thermodynamic analysis shows that the exergetic efficiency of the fixed-bed gasifier is mainly determined by the oxygen/coal ratio. The exergetic efficiency of the process will reach an optimum value of 78.3% when the oxygen/coal and steam/coal mass ratios are 0.14 and 0.80, respectively.