期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于红外热成像的微波热疗透热深度 被引量:8
1
作者 孙兵 江国泰 +1 位作者 陆晓峰 曹毅 《强激光与粒子束》 EI CAS CSCD 北大核心 2009年第8期1194-1198,共5页
对临床上常用的2 450 MHz微波在均匀介质中的电透入深度进行了分析,基于生物组织的热波模型,研究了生物组织吸收微波能的热效应;实验采用红外热成像仪测温,以2 450 MHz的微波辐射器辐照均匀的分层仿生体模,根据实验数据对微波热疗中透... 对临床上常用的2 450 MHz微波在均匀介质中的电透入深度进行了分析,基于生物组织的热波模型,研究了生物组织吸收微波能的热效应;实验采用红外热成像仪测温,以2 450 MHz的微波辐射器辐照均匀的分层仿生体模,根据实验数据对微波热疗中透热深度进行了研究,说明微波的透入深度和透热深度的区别,并给出微波辐射器的功率、辐照距离和辐照持续时间对透热深度的影响。结果表明:当采用增大功率、延长辐照时间和近距离辐照等手段,都可以提高微波在人体的透热深度,为体外微波热疗中的人体传输模型建立及热疗的无损测温与控温奠定实验基础。 展开更多
关键词 微波热疗 透热深度 红外热成像 仿生体模
下载PDF
Simplified propulsive model for biomimetic robot fish and its experimental validation 被引量:6
2
作者 喻俊志 Wang +2 位作者 Shuo Tan Min 《High Technology Letters》 EI CAS 2005年第4期382-386,共5页
As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a ... As a combination of bio-mechanism and engineering technology, robot fish has become a multidisci- plinary research that mainly involves both hydrodynamics-based control and actuation technology. This paper presents a simplified propulsive model for carangiform propulsion, which is a swimming mode suitable for high speed and high efficiency. The carangiform motion is modeled as an N-joint nscillating mechanism that is composed of two basic components: the streamlined fish body represented by a planar spline curve and its hmate caudal tail by an oscillating foil. The speed of fish's straight swimming is adjusted by modulating the joint's oscillating frequency, and its orientation is tuned by different joint's deflection. The results from actual experiment showed that the proposed simplified propulsive model could be a viable eandidate for application in aquatic: swimming vehicles. 展开更多
关键词 propulsive model robot fish carangitform propulsion body wave
下载PDF
Impact of Direct Radiative Forcing of Anthropogenic Aerosols on Diurnal Temperature Range in January in Eastern China
3
作者 CHANG Wen-Yuan LIAO Hong 《Atmospheric and Oceanic Science Letters》 2011年第6期356-362,共7页
This study investigates the changes in January diurnal temperature range(DTR) in China during 1961-2000.The observed DTR changes during 1981-2000 relative to 1961-80 are first analyzed based on the daily temperature d... This study investigates the changes in January diurnal temperature range(DTR) in China during 1961-2000.The observed DTR changes during 1981-2000 relative to 1961-80 are first analyzed based on the daily temperature data at 546 weather stations.These observed DTR changes are classified into six cases depending on the changes in daily maximum and minimum temperatures,and then the occurrence frequency and magnitude of DTR change in each case are presented.Three transient simulations are then performed to understand the impact of greenhouse gases(GHGs) and aerosol direct forcing on DTR change:one without anthropogenic radiative forcing,one with anthropogenic GHGs,and another one with the combined forcing of GHGs and five species of anthropogenic aerosols.The predicted daily DTR changes during the years 1981-2000 are also classified into six cases and are compared with the observations.Results show that the previously proposed reason for DTR reduction,a stronger nocturnal warming than a daytime warming,explains only 19.8%of the observed DTR reduction days.DTR reductions are found to generally occur in northeastern China,coinciding with significant regional warming.The simulation with GHG forcing alone reproduces this type of DTR reduction with an occurrence frequency of 32.9%,which is larger than the observed value.Aerosol direct forcing reduces DTR mainly by daytime cooling.Consideration of aerosol cooling improves the simulation of occurrence frequencies of different types of DTR changes as compared to the simulation with GHGs alone,but it cannot improve the prediction of the magnitude of DTR changes. 展开更多
关键词 diurnal temperature range greenhouse gases anthropogenic aerosols aerosol direct effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部