期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
XPS和FTIR分析仿生呼吸法对硅酸盐改性杉木浸渍效果的影响 被引量:6
1
作者 李萍 吴义强 +2 位作者 吕建雄 袁光明 左迎峰 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2021年第5期1430-1435,共6页
杉木进行硅酸盐浸渍改性处理后,木材内部的改性剂相关元素含量与分布是衡量浸渍效果的重要指标,对改性杉木的各项物理力学性能有着至关重要的作用。以硅酸盐为浸渍改性剂,采用仿生呼吸法对杉木进行浸渍改性。研究了仿生呼吸法对硅酸盐... 杉木进行硅酸盐浸渍改性处理后,木材内部的改性剂相关元素含量与分布是衡量浸渍效果的重要指标,对改性杉木的各项物理力学性能有着至关重要的作用。以硅酸盐为浸渍改性剂,采用仿生呼吸法对杉木进行浸渍改性。研究了仿生呼吸法对硅酸盐改性杉木的密度、抗弯强度、抗压强度、三切面硬度和24 h吸水率影响,利用XPS和FTIR分析了杉木素材与改性材的化学成份与化学结构,并对硅酸盐改性剂在改性杉木中的分布深度与分布规律进行了探讨。结果表明:经过硅酸盐浸渍改性后,改性杉木平均密度大于0.721 g·cm^(-3),抗弯强度和抗压强度分别增大了170.19%和286.64%。改性杉木横切面、径切面和弦切面的硬度均有不同程度的提高。硅酸盐改性使杉木的24 h吸水率从91.17%±2.51%降至39.23%±1.62%,表明杉木的尺寸稳定性大幅度提高。相比于杉木素材,改性杉木木材的XPS全谱扫描中出现了Na元素和Si元素的吸收峰,窄扫谱图中出现了Si—O—C和Na—O化学结构。同时,改性杉木木材的FTIR谱图中出现了Si—O—Si的吸收峰,并且游离羟基含量减少,缔合羟基增多。XPS和FTIR分析都表明硅酸盐浸注到了杉木木材的孔隙中,且硅酸钠与杉木木材中羟基形成了化学键结合和氢键结合。这也是改性杉木的力学性能和耐水性能提高的重要原因。另外,通过XPS测试发现改性杉木木材沿横向从表面到30 mm处都出现了C,O,Na和Si元素,并且沿横向从表面到30 mm处,Si—O—C结合结构的吸收峰强度基本相同,说明从表面到中间部位,硅酸钠与杉木木材中的羟基都较均匀地形成了化学键。对各元素进行定量分析发现,改性杉木木材中C,O,Na和Si元素的相对含量从表面到中间部位(30 mm)差异较小,进一步表明改性剂能较好浸入杉木木材中间,并且均匀性较好。研究结果将为杉木浸渍改性效果提供数据支撑,并为优化改性工艺与方法、进一步提高改性杉木的物理力学性能提供依据。 展开更多
关键词 杉木 硅酸盐 仿生呼吸法 XPS FTIR
下载PDF
硅酸盐仿生呼吸法改性杉木的工艺及性能 被引量:12
2
作者 李萍 张源 +3 位作者 左迎峰 吕建雄 王向军 吴义强 《林业工程学报》 CSCD 北大核心 2020年第6期57-63,共7页
杉木存在结构疏松、材质轻软、强度低等缺陷,对其进行浸渍改性是提高其性能的重要方法,然而传统有机树脂浸渍改性存在释放有毒害气体、易燃等危害人居环境安全的严重问题。鉴于此,采用无机物质对杉木进行浸渍改性可显著提高杉木力学性... 杉木存在结构疏松、材质轻软、强度低等缺陷,对其进行浸渍改性是提高其性能的重要方法,然而传统有机树脂浸渍改性存在释放有毒害气体、易燃等危害人居环境安全的严重问题。鉴于此,采用无机物质对杉木进行浸渍改性可显著提高杉木力学性能、尺寸稳定性、阻燃抑烟等性能,实现低值杉木的高值化利用。以硅酸钠为浸渍改性剂,硫酸盐、钙盐和磷酸盐复配物为固化剂,通过仿生呼吸法制得硅酸盐改性杉木。探讨了硅酸钠模数、硅酸钠质量分数、浸渍压力、浸渍时间、呼吸次数和呼吸频率(负压时间/正压时间)对改性杉木质量增加率和力学性能的影响,并采用扫描电子显微镜(SEM)和热重分析仪(TGA)对其微观形貌和耐热性能进行了表征。结果表明,当硅酸钠模数为3.4、硅酸钠浓度为30%、浸渍压力为0.5 MPa,浸渍时间为3 h、呼吸次数为6次、呼吸频率为2∶4时,改性杉木的质量增加率、抗弯强度、抗压强度和三切面硬度均为最佳。经过硅酸盐仿生改性后,改性杉木的横切面和纵切面都被硅酸盐较好填充,这也是杉木力学性能提高的原因。TGA分析表明,与杉木素材相比,改性杉木的耐热性能显著提高。 展开更多
关键词 杉木 木材改性 硅酸盐 仿生呼吸法 物理力学性能 耐热性能
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部