The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contrib...The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.展开更多
The so-called "green ship" is being regarded as a potential solution to the problems that the shipping industry faces, such as energy conservation and environmental protection. Some new features, such as int...The so-called "green ship" is being regarded as a potential solution to the problems that the shipping industry faces, such as energy conservation and environmental protection. Some new features, such as integrated renewable energy application, biomimetic materials, and antifriction and wear resistant coating have been accepted as the typical characteristics of a green ship, but the tribology problems involved in these domains have not been precisely redefined yet. Further, the related research work is generally focused on the technology or material itself, but not on the integration of the applicable object or green ship, marine environment, and tribological systematical analysis from the viewpoint of the energy efficiency design index(EEDI) and ship energy efficiency management plan(SEEMP) improvements. Aiming at the tribology problems of the green ship, this paper reviews the research status of this issue from three specific domains, which are the tribology problems of the renewable energy system, tribological research for hull resistance reduction, and energy efficiency enhancement. Some typical tribological problems in the sail-auxiliary system are discussed, along with the solar photovoltaic system and hull drag reduction in traditional marine mechanical equipment. Correspondingly, four domains that should be further considered for the future development target of the green ship are prospected.展开更多
文摘The contemporary demand for reducing carbon emission is changing the way architects design buildings, thus influencing a wide range of new solutions. In this paper, the author presents a method that intends to contribute for the discussion of recent strategies that lower the buildings' consumption of energy. The study establishes three priority parameters to analyze the faqades based on the materials, the practices and the thermal behavior. Each parameter is measured separately scaled from artificial to natural building materials, local to distant practices and insulation to inertia. The design of facades has been evolving to follow complex regulations that aim to increase the required sustainable performance of buildings. Scientific data is measurable individually by each parameter, though the cross influence between parameters raise the level of complexity. Shading systems, solar passive energy influence the measurement but the growing use of renewable energies affects the measurements of energy consumption. Each design responds differently to climatic conditions, and requires complex analyses considering the specificity of the natural environment and cultural context. The discussion makes use of scientific data that influences architectural design, the research requires a broader perception thus including cultural aspects. Recent high tech insulating systems have an effect on design solutions that characterize biophilia (human love of nature). The wisdom of traditional local solutions tested over generations holds cultural aspects of biomimicry (nature as model). The aim is to discuss whether the framework based on biophilia and biomimicry is useful for the research.
基金supported by National Natural Science Foundation of China (Grant Nos. 51422507 and 51509195)
文摘The so-called "green ship" is being regarded as a potential solution to the problems that the shipping industry faces, such as energy conservation and environmental protection. Some new features, such as integrated renewable energy application, biomimetic materials, and antifriction and wear resistant coating have been accepted as the typical characteristics of a green ship, but the tribology problems involved in these domains have not been precisely redefined yet. Further, the related research work is generally focused on the technology or material itself, but not on the integration of the applicable object or green ship, marine environment, and tribological systematical analysis from the viewpoint of the energy efficiency design index(EEDI) and ship energy efficiency management plan(SEEMP) improvements. Aiming at the tribology problems of the green ship, this paper reviews the research status of this issue from three specific domains, which are the tribology problems of the renewable energy system, tribological research for hull resistance reduction, and energy efficiency enhancement. Some typical tribological problems in the sail-auxiliary system are discussed, along with the solar photovoltaic system and hull drag reduction in traditional marine mechanical equipment. Correspondingly, four domains that should be further considered for the future development target of the green ship are prospected.