The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil po...The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.展开更多
As a novel class of metallic materials, bulk metallic glasses(BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials...As a novel class of metallic materials, bulk metallic glasses(BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials exhibit inherent multifunctional integration, which provides some inspiration for scientists and engineers to construct multifunctional artificial materials. In this contribution, inspired by superhydrophobic self-cleaning lotus leaves, multifunctional bulk metallic glasses(BMG) materials have been fabricated through the thermoplastic forming-based process followed by the SiO_2/soot deposition. To mimic the microscale papillae of the lotus leaf, the BMG micropillar with a hemispherical top was first fabricated using micro-patterned silicon templates based on thermoplastic forming. The deposited randomly distributed SiO_2/soot nanostructures covered on BMG micropillars are similar to the branch-like nanostructures on papillae of the lotus leaf. Micro-nanoscale hierarchical structures endow BMG replica with superhydrophobicity, a low adhesion towards water, and self-cleaning, similar to the natural lotus leaf. Furthermore, on the basis of the observation of the morphology of BMG replica in the Si mould, the formation mechanism of BMG replica was proposed in this work. The BMG materials with multifunction integration would extend their practical engineering applications and we expect this method could be widely adopted for the fabrication of other multifunctional BMG surfaces.展开更多
基金Projects(52075557,51805553) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-12) supported by the Project of State Key Laboratory of High Performance Complex Manufacturing,China。
文摘The preparation of superhydrophobic or underwater superoleophobic interface materials has become a research hotspot because of their wide application in self-cleaning, drag reduction, oil-water separation, anti-oil pollution and so on. The unique wettability of organisms gives inspiration to design and create new interface materials. This review focuses on the recent research progress of femtosecond laser micro/nano fabrication for bioinspired superhydrophobic or underwater superoleophobic surfaces. This review starts with a presentation of the related background including the advantages of femtosecond laser and wettability theoretical basis. Then, organisms with unique wettability in nature, the preparation of superhydrophobic or underwater superoleophobic surfaces by femtosecond lasers on different materials, and their related important applications are introduced. Finally, the current challenges and future prospects with regard to this field are provided.
基金the National Natural Science Foundation of China (21273016, 51271195)the National Basic Research Program of China (2013CB933003, 2015CB856800)+1 种基金the Program for New Century Excellent Talents in University, Beijing Higher Education Young Elite Teacher Project, the Fundamental Research Funds for the Central Universities, 111 project (B14009)the Key Research Program of the Chinese Academy of Sciences (KJZDEW-M01, M03)
文摘As a novel class of metallic materials, bulk metallic glasses(BMGs) have attracted a great deal of attention owing to their technological promise for practical engineering applications. In nature, biological materials exhibit inherent multifunctional integration, which provides some inspiration for scientists and engineers to construct multifunctional artificial materials. In this contribution, inspired by superhydrophobic self-cleaning lotus leaves, multifunctional bulk metallic glasses(BMG) materials have been fabricated through the thermoplastic forming-based process followed by the SiO_2/soot deposition. To mimic the microscale papillae of the lotus leaf, the BMG micropillar with a hemispherical top was first fabricated using micro-patterned silicon templates based on thermoplastic forming. The deposited randomly distributed SiO_2/soot nanostructures covered on BMG micropillars are similar to the branch-like nanostructures on papillae of the lotus leaf. Micro-nanoscale hierarchical structures endow BMG replica with superhydrophobicity, a low adhesion towards water, and self-cleaning, similar to the natural lotus leaf. Furthermore, on the basis of the observation of the morphology of BMG replica in the Si mould, the formation mechanism of BMG replica was proposed in this work. The BMG materials with multifunction integration would extend their practical engineering applications and we expect this method could be widely adopted for the fabrication of other multifunctional BMG surfaces.