期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于目标的域随机化方法在机器人操作方面的研究
被引量:
3
1
作者
张夏禹
陈小平
《计算机应用研究》
CSCD
北大核心
2022年第10期3084-3088,共5页
使用强化学习解决机器人操作问题有着诸多优势,然而传统的强化学习算法面临着奖励稀疏的困难,且得到的策略难以直接应用到现实环境中。为了提高策略从仿真到现实迁移的成功率,提出了基于目标的域随机化方法。使用基于目标的强化学习算...
使用强化学习解决机器人操作问题有着诸多优势,然而传统的强化学习算法面临着奖励稀疏的困难,且得到的策略难以直接应用到现实环境中。为了提高策略从仿真到现实迁移的成功率,提出了基于目标的域随机化方法。使用基于目标的强化学习算法对模型进行训练,可以有效地应对机器人操作任务奖励稀疏的情况,得到的策略可以在仿真环境下良好运行。与此同时在算法中还使用了目标驱动的域随机化方法,在提高策略泛用性以及克服仿真和现实环境之间的差距上有着良好的效果,仿真环境下的策略容易迁移到现实环境中并成功执行。结果表明,使用了基于目标的域随机化方法的强化学习算法有助于提高策略从仿真到现实迁移的成功率。
展开更多
关键词
强化学习
域随机化
机器人操作
仿真到现实迁移
下载PDF
职称材料
题名
基于目标的域随机化方法在机器人操作方面的研究
被引量:
3
1
作者
张夏禹
陈小平
机构
中国科学技术大学
出处
《计算机应用研究》
CSCD
北大核心
2022年第10期3084-3088,共5页
基金
国家重点研发计划资助项目(2019YFE0125200)。
文摘
使用强化学习解决机器人操作问题有着诸多优势,然而传统的强化学习算法面临着奖励稀疏的困难,且得到的策略难以直接应用到现实环境中。为了提高策略从仿真到现实迁移的成功率,提出了基于目标的域随机化方法。使用基于目标的强化学习算法对模型进行训练,可以有效地应对机器人操作任务奖励稀疏的情况,得到的策略可以在仿真环境下良好运行。与此同时在算法中还使用了目标驱动的域随机化方法,在提高策略泛用性以及克服仿真和现实环境之间的差距上有着良好的效果,仿真环境下的策略容易迁移到现实环境中并成功执行。结果表明,使用了基于目标的域随机化方法的强化学习算法有助于提高策略从仿真到现实迁移的成功率。
关键词
强化学习
域随机化
机器人操作
仿真到现实迁移
Keywords
reinforcement learning
domain randomization
robot manipulation
sim-to-real
分类号
TP399 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于目标的域随机化方法在机器人操作方面的研究
张夏禹
陈小平
《计算机应用研究》
CSCD
北大核心
2022
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部