The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal c...The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal climatic conditions that influence the microclimate of the greenhouse to predict the temporal evolution of the state variables characterizing this microclimate. The fuzzy control is an alternative to the approaches proposed by the automatic for the control of complex systems. The performance objectives of the looped systems and the corresponding actions are summarized in the form of rules of expertise, which are spelled out in plain language. This technique thus makes it possible to dispense with the use of mathematical models which are sometimes difficult to obtain. Our objective is the multivariable strategy synthesis and the fuzzy application to a multivariate system (MIMO ~ such as the agricultural greenhouse.) First, the principles of fuzzy logic and fuzzy control are recalled. The origins of non-Linearitys of the command are explained. One of the practical problems of this technique is the combinatorial explosion of the rule base when the number of variables involved becomes large. A solution to simplify the complexity of the system is presented together with an optimization algorithm to automatically adjust the parameters of the fuzzy controller. The last part is devoted to the synthesis of an optimal control of the greenhouse in order to compare it to the fuzzy control implemented.展开更多
Predicting the future course of an epidemic depends on being able to estimate the current numbers of infected individuals.However,while back-projection techniques allow reliable estimation of the numbers of infected i...Predicting the future course of an epidemic depends on being able to estimate the current numbers of infected individuals.However,while back-projection techniques allow reliable estimation of the numbers of infected individuals in the more distant past,they are less reliable in the recent past.We propose two new nonparametric methods to estimate the unobserved numbers of infected individuals in the recent past in an epidemic.The proposed methods are noniterative,easily computed and asymptotically normal with simple variance formulas.Simulations show that the proposed methods are much more robust and accurate than the existing back projection method,especially for the recent past,which is our primary interest.We apply the proposed methods to the 2003 Severe Acute Respiratory Syndorme(SARS) epidemic in Hong Kong.展开更多
文摘The main objective of this study is the control of the agricultural greenhouse in view of the economic interest generated by such an activity. A simulation model is developed, gathering all the external and internal climatic conditions that influence the microclimate of the greenhouse to predict the temporal evolution of the state variables characterizing this microclimate. The fuzzy control is an alternative to the approaches proposed by the automatic for the control of complex systems. The performance objectives of the looped systems and the corresponding actions are summarized in the form of rules of expertise, which are spelled out in plain language. This technique thus makes it possible to dispense with the use of mathematical models which are sometimes difficult to obtain. Our objective is the multivariable strategy synthesis and the fuzzy application to a multivariate system (MIMO ~ such as the agricultural greenhouse.) First, the principles of fuzzy logic and fuzzy control are recalled. The origins of non-Linearitys of the command are explained. One of the practical problems of this technique is the combinatorial explosion of the rule base when the number of variables involved becomes large. A solution to simplify the complexity of the system is presented together with an optimization algorithm to automatically adjust the parameters of the fuzzy controller. The last part is devoted to the synthesis of an optimal control of the greenhouse in order to compare it to the fuzzy control implemented.
基金supported in part by National Natural Science Foundation of China(Grant Nos. 10771148,11071197)supported by an RGC grant,the Chief Executive Community Project and Hong Kong Jockey Club Charities Trust
文摘Predicting the future course of an epidemic depends on being able to estimate the current numbers of infected individuals.However,while back-projection techniques allow reliable estimation of the numbers of infected individuals in the more distant past,they are less reliable in the recent past.We propose two new nonparametric methods to estimate the unobserved numbers of infected individuals in the recent past in an epidemic.The proposed methods are noniterative,easily computed and asymptotically normal with simple variance formulas.Simulations show that the proposed methods are much more robust and accurate than the existing back projection method,especially for the recent past,which is our primary interest.We apply the proposed methods to the 2003 Severe Acute Respiratory Syndorme(SARS) epidemic in Hong Kong.