The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in t...The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.展开更多
A Monte Carlo method of the 3D GEM simulation is introduced.The physical process of the neutron detection is described with the Geant4 code and the Garfield code.The results of the optimized electric-fields,the emitte...A Monte Carlo method of the 3D GEM simulation is introduced.The physical process of the neutron detection is described with the Geant4 code and the Garfield code.The results of the optimized electric-fields,the emitted ions spectrum,the electrons transverse diffusion and the signal width are presented.Moreover,the preliminary result with a CF-252 neutron source is reported.These are useful in designing detector structures and to provide an optimized option for the development of the boron-coated GEM neutron beam monitor.展开更多
文摘The essential for microseismic monitoring is fast and accurate calculation of seismic wave source location. The precision of most traditional microseismic monitoring processes of mines, using TDOA location method in two-dimensional space to position the microseismic events, as well as the accuracy of positioning microseismic events, may be reduced by the two-dimensional model and simple method, and ill-conditioned equations produced by TDOA location method will increase the positioning error. This article, based on inversion theory, studies the mathematical model of TDOA location method, polariza- tion analysis location method, and comprehensive difference location method of adding angle factor in the traditional TDOA location method. The feasibility of three methods is verified by numerical simulation and analysis of the positioning error of them. The results show that the comprehensive location method of adding angle difference has strong positioning stability and high positioning accuracy, and it may reduce the impact effectively about ill-conditioned equations to positioning results. Comprehensive location method with the data of actual measure may get better positioning results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11127508 and 11175199)China Spallation Neutron Source and the State Key Laboratory of Particle Detection and Electronics
文摘A Monte Carlo method of the 3D GEM simulation is introduced.The physical process of the neutron detection is described with the Geant4 code and the Garfield code.The results of the optimized electric-fields,the emitted ions spectrum,the electrons transverse diffusion and the signal width are presented.Moreover,the preliminary result with a CF-252 neutron source is reported.These are useful in designing detector structures and to provide an optimized option for the development of the boron-coated GEM neutron beam monitor.