This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-d...This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation ...The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.展开更多
A surgical simulation and evaluation method in the anterior cruciate ligament(ACL)reconstructionwith image-free navigation was presented.Firstly,video tracking module,bone surface reconstructionmodule and virtual simu...A surgical simulation and evaluation method in the anterior cruciate ligament(ACL)reconstructionwith image-free navigation was presented.Firstly,video tracking module,bone surface reconstructionmodule and virtual simulation module of this system were discussed.Secondly,the coordinate relations ofseveral surgery objects(including surgical instrument,anatomical,camera and screen)in the surgicalenvironment,the tracking based on MicronTracker with two cameras and the bone surface real-time recon-struction based on the Delaunay algorithm were introduced in detail.Finally,experiments of anisometrymeasurement and virtual simulation on two plastics were carried out to verify the validity of the proposedmethod.The anisometry value of reconstructed ACL was 8.970039mm.The effectiveness of ACL recon-struction has been proved by preliminary evaluation trials.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 551009038 and the specialized research fund for the doctoral program of higher education under Grant No. 200802170010
文摘This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
文摘The control system of an autonomous underwater vehicle (AUV) is introduced. According to control requirements of the AUV, a simple but practical adaptive PID control method is designed The semi-physical simulation is done to test the feasibility of the control system. The neural network idea and the structure of PID controller are referred to design the adaptive PID controller. An intelligent integral is introduced to improve control precision. Compaed with traditional PID con- trollers, the adaptive PID controller has simple structure, good online adjusting ability, fast convergence and good robustness. The simulation experiments also show that the adaptive PID control system has high precision and fine antijamming ability.
基金Supported by the National High Technology Research and Development Programme of China (No. 2004AA421022)National Science Fund for Distinguished Young Scholars of P. R. China (No. 60525314)National Science & Technology Pillar Program in the Eleventh Five-year Plan ( No.2006BAI03A16)
文摘A surgical simulation and evaluation method in the anterior cruciate ligament(ACL)reconstructionwith image-free navigation was presented.Firstly,video tracking module,bone surface reconstructionmodule and virtual simulation module of this system were discussed.Secondly,the coordinate relations ofseveral surgery objects(including surgical instrument,anatomical,camera and screen)in the surgicalenvironment,the tracking based on MicronTracker with two cameras and the bone surface real-time recon-struction based on the Delaunay algorithm were introduced in detail.Finally,experiments of anisometrymeasurement and virtual simulation on two plastics were carried out to verify the validity of the proposedmethod.The anisometry value of reconstructed ACL was 8.970039mm.The effectiveness of ACL recon-struction has been proved by preliminary evaluation trials.