Dislocation dynamics simulations are performed to investigate the effect of template shape on the nanoimprinting of metal layers. To this end, metal thin films are imprinted by a rigid template made of an array of equ...Dislocation dynamics simulations are performed to investigate the effect of template shape on the nanoimprinting of metal layers. To this end, metal thin films are imprinted by a rigid template made of an array of equispaced indenters of various shapes, i.e., rectangular, wedge, and circular. The geometry of the indenters is chosen such that the contact area is approximately the same at the final imprinting depth. Results show that, for all template shapes, the final patterns strongly depend on the dislocation activity, and that each imprint differs from the neighboring ones. Large material pile ups appear between the imprints, such that polishing of the metal layer is suggested for application of the patterns in electronics. Rectangular indenters require the lowest imprinting force and achieve the deepest retained imprints.展开更多
基金Project (No VENI 08120) supported by the Dutch National Scientific Foundation NWO and Dutch Technology Foundation STW
文摘Dislocation dynamics simulations are performed to investigate the effect of template shape on the nanoimprinting of metal layers. To this end, metal thin films are imprinted by a rigid template made of an array of equispaced indenters of various shapes, i.e., rectangular, wedge, and circular. The geometry of the indenters is chosen such that the contact area is approximately the same at the final imprinting depth. Results show that, for all template shapes, the final patterns strongly depend on the dislocation activity, and that each imprint differs from the neighboring ones. Large material pile ups appear between the imprints, such that polishing of the metal layer is suggested for application of the patterns in electronics. Rectangular indenters require the lowest imprinting force and achieve the deepest retained imprints.