Experience from recent earthquakes such as Gilan, Zanjan, Bam and Lorestan earthquakes in Iran indicated that the constructed buildings are vulnerable against earthquake. Vulnerability of these structures is due to va...Experience from recent earthquakes such as Gilan, Zanjan, Bam and Lorestan earthquakes in Iran indicated that the constructed buildings are vulnerable against earthquake. Vulnerability of these structures is due to various reasons such as designing without considering seismic regulations, problems of regulations (design goals), implementation problems, changing of the building occupancy class, increasing the weight of building stories, adding new stories to the building and changing in architecture of building without considering structural system. So the main objective of this research is to examine the features of building configuration and their effects as for the damages to buildings in past earthquakes. For this purpose, initially four occurred earthquakes in Iran are selected as case study. Then three types of buildings (steel structure, concrete structure and masonry buildings) are analyzed with details. Results showed that the most of damages are occurred in the old steel structures and masonry buildings which their ages are more than 25 years. The study showed that most of the buildings in the study area are steel structure and masonry buildings while concrete structures are infrequent which most of them had no or slight damages. Therefore, the importance and need to enhance the performance of available buildings against earthquake forces by rehabilitating methods would be more important than before. Also results indicated that the decisions related to architectural plan which have significant effect on seismic performance of buildings, can be divided into three categories: configuration of building, restrictive formal architectural plan and dangerous structural components, as these categories are not obstacle of each other, it is possible that each category has an influential effect on others. So organizing the design decisions in this way is very important so as to manage their effects and interdependencies.展开更多
Solar energy is the radiant light and heat from the Sun that has been harnessed by human since ancient times. Also secondary solar resources such as wind and wave power, hydroelectric power and biomass account for mos...Solar energy is the radiant light and heat from the Sun that has been harnessed by human since ancient times. Also secondary solar resources such as wind and wave power, hydroelectric power and biomass account for most of the available renewable energy on Earth, which can be used by human. Architects since alacient times have used various methods to hamesse and employ the solar energy for lighting, cooling and heating and etc. Meanwhile, Iran's ancient architecture, as an adaptive one, which consists of various climatic reigns, is filled with abounding examples of using sun energy in buildings. But, unfortunately despite these ancient methods, our modern architects mostly tend to provide energy of buildings with fossil fuels. This increases energy costs of the building's and also pollutes the environment. In this article it is intended to consider the ancient ways of using solar energy in Iran, and then suggest new methods for applying in modem buildings. The results of consideration show that among Solar technologies, passive and active methods, Iran's ancient architects have used passive methods, for example in mass and space, orientation and settlement of building. The idea of passive methods can be used in new shapes in current buildings, for instance by using solar space, central yard and etc. The suggestive method in this paper is combining the passive methods with the active ones.展开更多
文摘Experience from recent earthquakes such as Gilan, Zanjan, Bam and Lorestan earthquakes in Iran indicated that the constructed buildings are vulnerable against earthquake. Vulnerability of these structures is due to various reasons such as designing without considering seismic regulations, problems of regulations (design goals), implementation problems, changing of the building occupancy class, increasing the weight of building stories, adding new stories to the building and changing in architecture of building without considering structural system. So the main objective of this research is to examine the features of building configuration and their effects as for the damages to buildings in past earthquakes. For this purpose, initially four occurred earthquakes in Iran are selected as case study. Then three types of buildings (steel structure, concrete structure and masonry buildings) are analyzed with details. Results showed that the most of damages are occurred in the old steel structures and masonry buildings which their ages are more than 25 years. The study showed that most of the buildings in the study area are steel structure and masonry buildings while concrete structures are infrequent which most of them had no or slight damages. Therefore, the importance and need to enhance the performance of available buildings against earthquake forces by rehabilitating methods would be more important than before. Also results indicated that the decisions related to architectural plan which have significant effect on seismic performance of buildings, can be divided into three categories: configuration of building, restrictive formal architectural plan and dangerous structural components, as these categories are not obstacle of each other, it is possible that each category has an influential effect on others. So organizing the design decisions in this way is very important so as to manage their effects and interdependencies.
文摘Solar energy is the radiant light and heat from the Sun that has been harnessed by human since ancient times. Also secondary solar resources such as wind and wave power, hydroelectric power and biomass account for most of the available renewable energy on Earth, which can be used by human. Architects since alacient times have used various methods to hamesse and employ the solar energy for lighting, cooling and heating and etc. Meanwhile, Iran's ancient architecture, as an adaptive one, which consists of various climatic reigns, is filled with abounding examples of using sun energy in buildings. But, unfortunately despite these ancient methods, our modern architects mostly tend to provide energy of buildings with fossil fuels. This increases energy costs of the building's and also pollutes the environment. In this article it is intended to consider the ancient ways of using solar energy in Iran, and then suggest new methods for applying in modem buildings. The results of consideration show that among Solar technologies, passive and active methods, Iran's ancient architects have used passive methods, for example in mass and space, orientation and settlement of building. The idea of passive methods can be used in new shapes in current buildings, for instance by using solar space, central yard and etc. The suggestive method in this paper is combining the passive methods with the active ones.