Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the pre...Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the presence of high leakage currents in OPV devices commonly constrains their effective performance under indoor conditions.In this study,we identified that the origin of the high leakage currents in OPV devices lay in pinhole defects present within the active layer(AL).By integrating an automated spin-coating strategy with sequential deposition processes,we achieved the compactness of the AL and minimized the occurrence of pinhole defects therein.Experimental findings demonstrated that with an increase in the number of deposition cycles,the density of pinhole defects in the AL underwent a marked reduction.Consequently,the leakage current experienced a substantial decrease by several orders of magnitude which achieved through well-calibrated AL deposition procedures.This enabled a twofold enhancement in the power conversion efficiency(PCE) of the OPV devices under conditions of indoor illumination.展开更多
The time course of changes in the levels of extracellular DA/DOPAC in rat striatum during brain ischemia and reperfusion was measured by the method ofin vivo differential normal pulse voltammetry(DNPV).Acute cerebral ...The time course of changes in the levels of extracellular DA/DOPAC in rat striatum during brain ischemia and reperfusion was measured by the method ofin vivo differential normal pulse voltammetry(DNPV).Acute cerebral ischemia of rats was pro- duced by four—vessel occlusion.The effects of(+)MK-801 and schizandrol A on the change of DA/DOPAC were investigated.The results showed that the DA/DOPAC peak in- creased markedly during 6 min of ischemia and,after reperfusion,the peak height decreased gradually.Both(+)-MK-801 and schizandrol A significantly inhibited the DA release after ischemia jn the striatum.展开更多
Antiretroviral therapy has achieved great success in suppressing human immunodeficiency virus(HIV)replication and transforming HIV infection from a fatal disease to a manageable chronic disease.However,the latent HIV ...Antiretroviral therapy has achieved great success in suppressing human immunodeficiency virus(HIV)replication and transforming HIV infection from a fatal disease to a manageable chronic disease.However,the latent HIV reservoir persists in the body of HIVinfected individuals and is prone to reactivation.Therefore,the development of new treatment methods aimed at a complete cure for HIV is needed.The leading strategy for HIV eradication is based on eliminating and preventing the reactivation of latent reservoirs through an approach known as“shock and kill.”This strategy involves the use of latency-reversing agents(LRAs)to activate the HIV provirus in latent viral reservoir cells.Many LRAs can be obtained from natural resources,including plants and marine organisms.In this review,we provide an overview of natural products used to eliminate HIV latency.展开更多
This paper proposes a voltage-based hot-spot detection method for defective cells in PV module using projector. The presence of internal crystal defects is one of the main causes of hot-spot phenomenon in PV modules. ...This paper proposes a voltage-based hot-spot detection method for defective cells in PV module using projector. The presence of internal crystal defects is one of the main causes of hot-spot phenomenon in PV modules. Authors previously investigated the physical characteristics of hot-spot phenomenon referring to internal crystal defect. Based on it, a hot-spot detection method named as current-based SRC (self reverse current) detection method is developed. However, it becomes extraordinarily complicated to determine the defective cells under low illumination. In order to avoid this disadvantage, authors improve the SRC detection method by applying voltage. From the feasibility experiment results, it is confirmed that by calculating cell HSI (hotspots index) with voltage, the PV modules with defective cells can be prospectively excluded even under low illumination.展开更多
Chalcogenide perovskites(CPs) exhibiting lower band gaps than oxide perovskites and higher stability than halide perovskites are promising materials for photovoltaic and optoelectronic applications. For such applicati...Chalcogenide perovskites(CPs) exhibiting lower band gaps than oxide perovskites and higher stability than halide perovskites are promising materials for photovoltaic and optoelectronic applications. For such applications, the absence of deep defect levels serving as recombination centers(dubbed defect tolerance) is a highly desirable property. Here,using density functional theory(DFT) calculations, we study the intrinsic defects in BaZrS_(3), a representative CP material.We compare Hubbard-U and hybrid functional methods, both of which have been widely used in addressing the band gap problem of semi-local functionals in DFT. We find that tuning the U value to obtain experimental bulk band gap and then using the obtained U value for defect calculations may result in over-localization of defect states. In the hybrid functional calculation, the band gap of BaZrS_(3)can be accurately obtained. We observe the formation of small S-atom clusters in both methods, which tend to self-passivate the defects from forming mid-gap levels. Even though in the hybrid functional calculations several relatively deep defects are observed, all of them exhibit too high formation energy to play a significant role if the materials are prepared under thermal equilibrium.BaZrS_(3)is thus expected to exhibit sufficient defect tolerance promising for photovoltaic and optoelectronic applications.展开更多
Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that ...Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that prevent stable TPSCs.In this study,we outline a new process that addresses these issues by using tin(II)acetate(Sn(Ac)2)in place of the conventional SnF2 precursor additive.Compared with SnF2,Sn(Ac)2 improves the crystallinity and stability of tin perovskite with fewer defects and better charge extraction.Using this process,we developed a device that has a higher external quantum efficiency for charge extraction compared with the control devices and a power conversion efficiency of 9.93%,which maintained more than 90%of its initial efficiency after 1000 h operation at the maximum power point under standard AM 1.5G solar illumination.展开更多
基金Fundamental Research Funds for the Central Universities,China (No. 2232022A13)。
文摘Organic photovoltaic(OPV) devices hold great promise for indoor light harvesting,offering a theoretical upper limit of power conversion efficiency that surpasses that of other photovoltaic technologies.However,the presence of high leakage currents in OPV devices commonly constrains their effective performance under indoor conditions.In this study,we identified that the origin of the high leakage currents in OPV devices lay in pinhole defects present within the active layer(AL).By integrating an automated spin-coating strategy with sequential deposition processes,we achieved the compactness of the AL and minimized the occurrence of pinhole defects therein.Experimental findings demonstrated that with an increase in the number of deposition cycles,the density of pinhole defects in the AL underwent a marked reduction.Consequently,the leakage current experienced a substantial decrease by several orders of magnitude which achieved through well-calibrated AL deposition procedures.This enabled a twofold enhancement in the power conversion efficiency(PCE) of the OPV devices under conditions of indoor illumination.
文摘The time course of changes in the levels of extracellular DA/DOPAC in rat striatum during brain ischemia and reperfusion was measured by the method ofin vivo differential normal pulse voltammetry(DNPV).Acute cerebral ischemia of rats was pro- duced by four—vessel occlusion.The effects of(+)MK-801 and schizandrol A on the change of DA/DOPAC were investigated.The results showed that the DA/DOPAC peak in- creased markedly during 6 min of ischemia and,after reperfusion,the peak height decreased gradually.Both(+)-MK-801 and schizandrol A significantly inhibited the DA release after ischemia jn the striatum.
基金supported by the Japan Society for the Promotion of Science KAKENHI 17K08348 and 21K06619(Wei Li).
文摘Antiretroviral therapy has achieved great success in suppressing human immunodeficiency virus(HIV)replication and transforming HIV infection from a fatal disease to a manageable chronic disease.However,the latent HIV reservoir persists in the body of HIVinfected individuals and is prone to reactivation.Therefore,the development of new treatment methods aimed at a complete cure for HIV is needed.The leading strategy for HIV eradication is based on eliminating and preventing the reactivation of latent reservoirs through an approach known as“shock and kill.”This strategy involves the use of latency-reversing agents(LRAs)to activate the HIV provirus in latent viral reservoir cells.Many LRAs can be obtained from natural resources,including plants and marine organisms.In this review,we provide an overview of natural products used to eliminate HIV latency.
文摘This paper proposes a voltage-based hot-spot detection method for defective cells in PV module using projector. The presence of internal crystal defects is one of the main causes of hot-spot phenomenon in PV modules. Authors previously investigated the physical characteristics of hot-spot phenomenon referring to internal crystal defect. Based on it, a hot-spot detection method named as current-based SRC (self reverse current) detection method is developed. However, it becomes extraordinarily complicated to determine the defective cells under low illumination. In order to avoid this disadvantage, authors improve the SRC detection method by applying voltage. From the feasibility experiment results, it is confirmed that by calculating cell HSI (hotspots index) with voltage, the PV modules with defective cells can be prospectively excluded even under low illumination.
基金supported by the National Natural Science Foundation of China (11774365)the Natural Science Foundation of Shanghai (19ZR1421800)+4 种基金Shanghai International Cooperation Project (20520760900)the Opening Project and Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201804 and SKL201803SIC) support by US National Science Foundation (NSF) (CBET1510121)US Department of Energy (DOE) (DEEE0007364)support by US NSF (CBET-1510948).support by US NSF (DMR-1506669)support by the Fundamental Research Funds for the Central Universities (DUT21RC(3) 033)。
文摘Chalcogenide perovskites(CPs) exhibiting lower band gaps than oxide perovskites and higher stability than halide perovskites are promising materials for photovoltaic and optoelectronic applications. For such applications, the absence of deep defect levels serving as recombination centers(dubbed defect tolerance) is a highly desirable property. Here,using density functional theory(DFT) calculations, we study the intrinsic defects in BaZrS_(3), a representative CP material.We compare Hubbard-U and hybrid functional methods, both of which have been widely used in addressing the band gap problem of semi-local functionals in DFT. We find that tuning the U value to obtain experimental bulk band gap and then using the obtained U value for defect calculations may result in over-localization of defect states. In the hybrid functional calculation, the band gap of BaZrS_(3)can be accurately obtained. We observe the formation of small S-atom clusters in both methods, which tend to self-passivate the defects from forming mid-gap levels. Even though in the hybrid functional calculations several relatively deep defects are observed, all of them exhibit too high formation energy to play a significant role if the materials are prepared under thermal equilibrium.BaZrS_(3)is thus expected to exhibit sufficient defect tolerance promising for photovoltaic and optoelectronic applications.
基金the National Natural Science Foundation of China(11834011 and 11911530142)。
文摘Tin perovskite solar cells(TPSCs)are promising for lead-free perovskite solar cells(PSCs)and have led to extensive research;however,the poor crystallinity and chemical stability of tin perovskites are two issues that prevent stable TPSCs.In this study,we outline a new process that addresses these issues by using tin(II)acetate(Sn(Ac)2)in place of the conventional SnF2 precursor additive.Compared with SnF2,Sn(Ac)2 improves the crystallinity and stability of tin perovskite with fewer defects and better charge extraction.Using this process,we developed a device that has a higher external quantum efficiency for charge extraction compared with the control devices and a power conversion efficiency of 9.93%,which maintained more than 90%of its initial efficiency after 1000 h operation at the maximum power point under standard AM 1.5G solar illumination.