Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporall...Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporally correlated noise. The growth equations studied include the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant (SGG), and Lai-Das Sarma-Villain (LDV) equations. The anomalous scaling exponents in both the weak- and strong-coupling regions are obtained, respectively.展开更多
An important functioning mechanism of biological macromolecules is the transition between different conformed states due to thermal fluctuation. In the present paper, a biological macromolecule is modeled as two stran...An important functioning mechanism of biological macromolecules is the transition between different conformed states due to thermal fluctuation. In the present paper, a biological macromolecule is modeled as two strands with side chains facing each other, and its stochastic dynamics including the statistics of stationary motion and the statistics of conformational transition is studied by using the stochastic averaging method for quasi Hamikonian systems. The theoretical results are confirmed with the results from Monte Carlo simulation.展开更多
基金National Natural Science Foundation of China under Grant No.10674177
文摘Based on the scaling idea of local slopes by Lopez et al. [Phys. Rev. Lett. 94 (2005) 166103], we investigate anomalous dynamic scaling of (d + 1)-dimensional surface growth equations with spatially and temporally correlated noise. The growth equations studied include the Kardar-Parisi-Zhang (KPZ), Sun-Guo-Grant (SGG), and Lai-Das Sarma-Villain (LDV) equations. The anomalous scaling exponents in both the weak- and strong-coupling regions are obtained, respectively.
基金Project supported by the National Natural Science Foundation of China (No.10332030)the Specialized Research Fund for the Doc- toral Program of Higher Education of China (No.20060335125)the National Science Foundation for Post-doctoral Scientists of China (No.20060390338)
文摘An important functioning mechanism of biological macromolecules is the transition between different conformed states due to thermal fluctuation. In the present paper, a biological macromolecule is modeled as two strands with side chains facing each other, and its stochastic dynamics including the statistics of stationary motion and the statistics of conformational transition is studied by using the stochastic averaging method for quasi Hamikonian systems. The theoretical results are confirmed with the results from Monte Carlo simulation.