介绍了一种用于改善带宽公平性的随机优先检测新算法,即Bandwidth Fairness of RED(BF-RED)。该算法首先根据落差权重(drop-weight)定义了高带宽流,然后通过增加控制高带宽流的最大值和参数来增大落差的可能性。最后还在一些网络环境中...介绍了一种用于改善带宽公平性的随机优先检测新算法,即Bandwidth Fairness of RED(BF-RED)。该算法首先根据落差权重(drop-weight)定义了高带宽流,然后通过增加控制高带宽流的最大值和参数来增大落差的可能性。最后还在一些网络环境中模拟评估了该BF-RED算法。展开更多
By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out so...By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite.展开更多
基金The National Natural Science Foundation of China(No.61300054)the Natural Science Foundation of Jiangsu Province(No.BK2011190,BK20130879)+1 种基金the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB520018)the Science Foundation of Nanjing University of Posts&Telecommunications(No.NY212023)
文摘By analyzing the average percent of faults detected (APFD) metric and its variant versions, which are widely utilized as metrics to evaluate the fault detection efficiency of the test suite, this paper points out some limitations of the APFD series metrics. These limitations include APFD series metrics having inaccurate physical explanations and being unable to precisely describe the process of fault detection. To avoid the limitations of existing metrics, this paper proposes two improved metrics for evaluating fault detection efficiency of a test suite, including relative-APFD and relative-APFDc. The proposed metrics refer to both the speed of fault detection and the constraint of the testing source. The case study shows that the two proposed metrics can provide much more precise descriptions of the fault detection process and the fault detection efficiency of the test suite.