Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated ...Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.展开更多
Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as ...Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.展开更多
The feasibility and kinetics of lead recovery from the slag of traditional lead melting furnace using chloride leaching were investigated.The effects of operating parameters such as leaching time,NaCl concentration,Fe...The feasibility and kinetics of lead recovery from the slag of traditional lead melting furnace using chloride leaching were investigated.The effects of operating parameters such as leaching time,NaCl concentration,FeCl3concentration,liquid/solid ratio,stirring rate,temperature,and particle size on recovery of lead were studied and the optimization was done through the response surface methodology(RSM)based on central composite design(CCD)model.The optimum conditions were achieved as follows:leaching time60min,80°C,stirring rate800r/min,NaCl concentration200g/L,FeCl3concentration80g/L,liquid/solid ratio16,and particle size less than106μm.More than96%of lead was effectively recovered in optimum condition.Based on analysis of variance,the reaction temperature,liquid/solid ratio,and NaCl concentration were determined as the most effective parameters on leaching process,respectively.Kinetics study revealed that chloride leaching of galena is a first-order reaction and the diffusion through solid reaction product and chemical reaction control the mechanism.The activation energy of chloride leaching of galena was determined using Arrhenius model as27.9kJ/mol.展开更多
Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions...Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.展开更多
The application of leaching process to extracting Mn from a low-grade manganese ore was investigated using a software based design of experiments. Four main parameters, i.e. sulfuric acid concentration, oxalic acid co...The application of leaching process to extracting Mn from a low-grade manganese ore was investigated using a software based design of experiments. Four main parameters, i.e. sulfuric acid concentration, oxalic acid concentration, time and temperature were considered in a central composite response surface design. The recoveries of Mn and Fe were selected as response of design. The optimum conditions under which the Mn and Fe recoveries were the highest and the time and temperature were the lowest were determined using statistical analysis and analysis of variance (ANOVA). The results showed that Mn and Fe recoveries were 93.44% and 15.72% under the optimum condition, respectively. Also, sulfuric acid concentration was the most effective parameter affecting the process. The amounts of sulfuric and oxalic acid were obtained to be 7% and 42.50 g/L in optimum condition and the best time and temperature were 65 min and 63 ℃.展开更多
The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the produc...The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.展开更多
The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied...The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.展开更多
The copper extraction in shaking bioreactors was modeled and optimized using response surface methodology(RSM). Influential parameters in the mesophilic bioleaching process of a low-grade copper ore including p H va...The copper extraction in shaking bioreactors was modeled and optimized using response surface methodology(RSM). Influential parameters in the mesophilic bioleaching process of a low-grade copper ore including p H value, pulp density, and initial concentration of ferrous ions were comprehensively studied. The effect of leaching time on the response(copper extraction) at the 1st, 4th, 9th, 14 th and 22 nd days of treatment was modeled and examined. The central composite design methodology(CCD) was used as the design matrix to predict the optimal level of these parameters. Then, the model equation at the 22 nd day was optimized using the quadratic programming(QP) to maximize the total copper extraction within the studied experimental range. Under the optimal condition(initial p H value of 2.0, pulp density of 1.59%, and initial concentration of ferrous ions of 0 g/L), the total copper extraction predicted by the model is 85.98% which is significantly close to that obtained from the experiment(84.57%). The results show that RSM could be useful to predict the maximum copper extraction from a low-grade ore and investigate the effects of variables on the final response. Besides, a couple of statistically significant interactions are derived between p H value and pulp density as well as p H value and initial ferrous ion concentration which are precisely interpreted. However, there is no statistically significant interaction between the initial ferrous ion concentration and the pulp density. Additionally, the response at optimal levels of p H value and pulp density is found to be independent on the level of initial ferrous concentration.展开更多
The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucke...The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
基金Project (2012zzts026) supported by the Fundamental Research Funds for the Central Universities,ChinaProject (201205020) supported by Scientific Research Program of Marine Public Welfare Industry of China+2 种基金Project (51074195) supported by the National Natural Science Foundation of ChinaProject (CX2012B123) supported by Research Innovation for Graduate Student of Hunan Province,ChinaProject (12C517) supported by Education Department of Hunan Province,China
文摘Effects of initial pH, temperature, liquid volume, rotation speed, galvanic interaction (pyrite ratio) and pulp density on bioleaching of complex Cu-polymetallic concentrate were investigated. The results indicated that the copper extraction at pH 1.5 was 1.5 and 1.4 times that at pH 1.0 and pH 2.0 respectively. The copper extraction obtained at 45 ℃ was 1236.8%higher than that at 50 ℃. With the increase of rotation speed or the decrease of liquid volume, copper extraction was improved obviously. Copper extraction was improved gradually with the increase of pyrite ratio. However, when the ratio was higher than 20.0%, no further increase in copper extraction was observed. And the statistically significant interactive effects on copper extraction were found between temperature and pH, and temperature and pyrite ratio.
文摘Novel schemes for a charge sensitive amplifier (CSA) and a CR-(RC), semi-Gaussian shaper in a fully integrated CMOS readout circuit for particle detectors are presented. The CSA is designed with poly-resistors as feedback components to reduce noise. Compared with conventional CSA, the input referred equivalent noise charge(ENC) is simulated to be reduced from 5036e to 2381e with a large detector capacitance of 150pF at the cost of 0.5V output swing loss. The CR-(RC),semi-Gaussian shaper uses MOS transistors in the triode region in series with poly-resistors to compensate process variation without much linearity reduction.
文摘The feasibility and kinetics of lead recovery from the slag of traditional lead melting furnace using chloride leaching were investigated.The effects of operating parameters such as leaching time,NaCl concentration,FeCl3concentration,liquid/solid ratio,stirring rate,temperature,and particle size on recovery of lead were studied and the optimization was done through the response surface methodology(RSM)based on central composite design(CCD)model.The optimum conditions were achieved as follows:leaching time60min,80°C,stirring rate800r/min,NaCl concentration200g/L,FeCl3concentration80g/L,liquid/solid ratio16,and particle size less than106μm.More than96%of lead was effectively recovered in optimum condition.Based on analysis of variance,the reaction temperature,liquid/solid ratio,and NaCl concentration were determined as the most effective parameters on leaching process,respectively.Kinetics study revealed that chloride leaching of galena is a first-order reaction and the diffusion through solid reaction product and chemical reaction control the mechanism.The activation energy of chloride leaching of galena was determined using Arrhenius model as27.9kJ/mol.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue is a highly alkaline waste containing soluble alkaline anions, which can cause environmental concerns. The optimal leaching conditions, distribution of alkaline anions, types of pivotal alkaline anions and their dissolution behaviors were investigated based on the combination of single factors-orthogonal experiments and leaching stage experiment. Using a two-stage leaching, 86% of the soluble alkaline anions(CO3^2-, HCO4^-,Al(OH)4^-, OH^-) were leached with a L/S ratio of 2 mL/g, at 30 ℃, over 23 h. During the first stage of leaching, approximately 88% of alkaline anions were leached from the dissolution of free alkali(Na OH, carbonate, bicarbonate, NaAl(OH)4) with the rest originating from the dissolution of alkaline minerals(calcite, cancrinite and hydrogarnet). Supernatant alkalinity was 69.78 mmol/L with CO3^2- accounting for 75%. Furthermore, carbonate leaching was controlled by solid film diffusion using the Stumm Model with an apparent activation energy of 10.24 kJ/mol.
文摘The application of leaching process to extracting Mn from a low-grade manganese ore was investigated using a software based design of experiments. Four main parameters, i.e. sulfuric acid concentration, oxalic acid concentration, time and temperature were considered in a central composite response surface design. The recoveries of Mn and Fe were selected as response of design. The optimum conditions under which the Mn and Fe recoveries were the highest and the time and temperature were the lowest were determined using statistical analysis and analysis of variance (ANOVA). The results showed that Mn and Fe recoveries were 93.44% and 15.72% under the optimum condition, respectively. Also, sulfuric acid concentration was the most effective parameter affecting the process. The amounts of sulfuric and oxalic acid were obtained to be 7% and 42.50 g/L in optimum condition and the best time and temperature were 65 min and 63 ℃.
基金Supported by the National Natural Science Foundation of China (61074079)Shanghai Leading Academic Discipline Project(B504)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China (20100074120010)the Natural Science Foundation of Shanghai City (11ZR1409700)
文摘The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.
文摘The aim of this work is to investigate and optimize the effects of the leaching parameters on the selective leaching of zinc from electric arc furnace steelmaking dust (EAFD). The response surface method was applied on the basis of a three-level Box–Behnken experimental design method for optimization of selective leaching parameters of zinc from EAFD. The leaching recoveries of zinc (YZn) and iron (YFe) were taken as the response variables, where the concentration of sulphuric acid (X1, mol/L), leaching temperature (X2, °C), leaching time (X3, min), and liquid/solid ratio (X4, mL/g) were considered as the independent variables (factors). The mathematical model was proposed. Statistical ANOVA analysis and confirmation tests were applied. A maximum of 79.09% of zinc was recovered while the minimum iron recovery was 4.08% under the optimum conditions of leaching time 56.42 min, H2SO4 concentration 2.35 mol/L, leaching temperature 25 °C and liquid/solid ratios. By using ANOVA, the most influential factors on leaching of zinc and iron were determined as H2SO4 concentration and leaching temperature, respectively. The proposed model equations using response surface methodology show good agreement with the experimental data, with correlation coefficients (R2) of 0.98 for zinc recovery and 0.97 for iron recovery.
文摘The copper extraction in shaking bioreactors was modeled and optimized using response surface methodology(RSM). Influential parameters in the mesophilic bioleaching process of a low-grade copper ore including p H value, pulp density, and initial concentration of ferrous ions were comprehensively studied. The effect of leaching time on the response(copper extraction) at the 1st, 4th, 9th, 14 th and 22 nd days of treatment was modeled and examined. The central composite design methodology(CCD) was used as the design matrix to predict the optimal level of these parameters. Then, the model equation at the 22 nd day was optimized using the quadratic programming(QP) to maximize the total copper extraction within the studied experimental range. Under the optimal condition(initial p H value of 2.0, pulp density of 1.59%, and initial concentration of ferrous ions of 0 g/L), the total copper extraction predicted by the model is 85.98% which is significantly close to that obtained from the experiment(84.57%). The results show that RSM could be useful to predict the maximum copper extraction from a low-grade ore and investigate the effects of variables on the final response. Besides, a couple of statistically significant interactions are derived between p H value and pulp density as well as p H value and initial ferrous ion concentration which are precisely interpreted. However, there is no statistically significant interaction between the initial ferrous ion concentration and the pulp density. Additionally, the response at optimal levels of p H value and pulp density is found to be independent on the level of initial ferrous concentration.
基金Project(51475478)supported by the National Natural Science Foundation of ChinaProject(2012AA041801)supported by the National High Technology Research and Development Program of China+1 种基金Project(2014FJ1002)supported by the Science and Technology Major Project of Hunan Province,ChinaProject(2013CB035401)supported by the National Basic Research Program of China。
文摘The layout of the buckets for tunnel boring machine(TBM)directly affects the muck removal efficiency of cutterhead during excavation.In order to improve the muck removal performance for TBM,the optimal design of bucket layout was investigated.The whole muck transfer process was simulated by discrete-element method(DEM),including the muck falling,colliding,pilling up,shoveling and transferring into the hopper.The muck model was established based on size distribution analysis of muck samples from the water-supply tunnel project in Jilin Province,China.Then,the influence of the bucket number and the interval angle between buckets on muck removal performance was investigated.The results indicated that,as the number of buckets increased from four to eight,the removed muck increased by 29%and the residual volume decreased by 40.5%,and the process became steadier.Different interval angles between buckets were corresponding to different removed muck irregularly,but the residual muck number increased generally with the angles.The optimal layout of buckets for the cutterhead in this tunnel project was obtained based on the simulation results,and the muck removal performance of the TBM was verified by the actual data in the engineering construction.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.