期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
遗传算法在结构有限元模型修正中的应用 被引量:20
1
作者 闫桂荣 段忠东 欧进萍 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第2期181-186,共6页
针对传统优化矩阵方法和优化元素方法的目标函数存在误导性的问题,采用改进的最优化元素型模型修正法,该方法定义了合理的目标函数,不需要质量归一化的模态振型.为了快速、准确地求得全局最优解,使用一种浮点数编码的遗传算法来解决模... 针对传统优化矩阵方法和优化元素方法的目标函数存在误导性的问题,采用改进的最优化元素型模型修正法,该方法定义了合理的目标函数,不需要质量归一化的模态振型.为了快速、准确地求得全局最优解,使用一种浮点数编码的遗传算法来解决模型修正问题中的优化问题.通过对一个7个自由度的质量-弹簧系统和一个复杂平面桁架结构模型修正的数值计算,验证基于遗传算法的改进的最优化元素型法的有效性. 展开更多
关键词 修正 优化元素型法 遗传算
下载PDF
Shape optimization of plate with static and dynamic constraints via virtual laminated element 被引量:1
2
作者 李芳 徐兴 凌道盛 《Journal of Zhejiang University Science》 EI CSCD 2003年第2期202-206,共5页
The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be def... The virtual laminated element method (VLEM) can resolve structural shap e optimization problems with a new method. According to the characteristics of V LEM , only some characterized layer thickness values need be defined as design v ariables instead of boundary node coordinates or some other parameters determini ng the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimizati on process so as to avoid optimization failures resulting from some distortion grid elements. Th e thickness distribution in thin plate optimization problems in other studies be fore is of stepped shape. However, in this paper, a continuous thickness distrib ution can be obtained after optimization using VLEM, and is more reasonable. Fur thermore, an approximate reanalysis method named ″behavior model technique″ ca n be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method. 展开更多
关键词 Optimum design Virtual laminated element method(V LEM) Behavior model technique Structural reanalysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部