Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in c...Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.展开更多
The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media ...The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media with cracks are discussed. Available experimental data on high rate fracture of different rock materials and incubation time based fracture criteria are used in order to evaluate critical parameters of causing fracture in these materials. Previously discovered possibility to optimize (minimize) energy input for fracture is discussed in connection to industrial rock fracture processes. It is shown that optimal value of momentum associated with critical load in order to initialize fracture in rock media does strongly depend on the incubation time and the impact duration. Existence of optimal load shapes minimizing momentum for a single fracturing impact or a sequence of periodic fracturing impacts is demonstrated.展开更多
基金supported by the National Key R&D Program of China [grant number 2023YFF0805202]the National Natural Science Foun-dation of China [grant number 42175045]the Strategic Priority Research Program of the Chinese Academy of Sciences [grant number XDB42000000]。
文摘Atlantic Meridional Overturning Circulation(AMOC)plays a central role in long-term climate variations through its heat and freshwater transports,which can collapse under a rapid increase of greenhouse gas forcing in climate models.Previous studies have suggested that the deviation of model parameters is one of the major factors in inducing inaccurate AMOC simulations.In this work,with a low-resolution earth system model,the authors try to explore whether a reasonable adjustment of the key model parameter can help to re-establish the AMOC after its collapse.Through a new optimization strategy,the extra freshwater flux(FWF)parameter is determined to be the dominant one affecting the AMOC’s variability.The traditional ensemble optimal interpolation(EnOI)data assimilation and new machine learning methods are adopted to optimize the FWF parameter in an abrupt 4×CO_(2) forcing experiment to improve the adaptability of model parameters and accelerate the recovery of AMOC.The results show that,under an abrupt 4×CO_(2) forcing in millennial simulations,the AMOC will first collapse and then re-establish by the default FWF parameter slowly.However,during the parameter adjustment process,the saltier and colder sea water over the North Atlantic region are the dominant factors in usefully improving the adaptability of the FWF parameter and accelerating the recovery of AMOC,according to their physical relationship with FWF on the interdecadal timescale.
基金supported by RFBR Research (Grant Nos. 10-01-00810-a, 11-01-00491-a and 10-01-91154-GFEN_a)Russian Federation State Contracts and Academic Programs of the Russian Academy of Sciences
文摘The paper is summarizing latest results connected with application of the incubation time approach to problems of dynamic fracture of rock materials. Incubation time based fracture criteria for intact media and media with cracks are discussed. Available experimental data on high rate fracture of different rock materials and incubation time based fracture criteria are used in order to evaluate critical parameters of causing fracture in these materials. Previously discovered possibility to optimize (minimize) energy input for fracture is discussed in connection to industrial rock fracture processes. It is shown that optimal value of momentum associated with critical load in order to initialize fracture in rock media does strongly depend on the incubation time and the impact duration. Existence of optimal load shapes minimizing momentum for a single fracturing impact or a sequence of periodic fracturing impacts is demonstrated.