Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in pet...Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.展开更多
Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararnet...Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.展开更多
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea...Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.展开更多
Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed i...Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.展开更多
The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainla...The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.展开更多
An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress dif...An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress difference was developed as an indicator of the degree of springback instead of implicit springback analysis.Explicit finite element method(FEM)was used to analyze the forming process and to provide the stress distribution for calculating the amount of the stress indicator.In addition,multi-island genetic algorithm(MGA)was employed to seek the optimal loading condition.A case study was performed to demonstrate the potential of the suggested method.The results show that the optimization design of process parameters effectively reduces the amount of springback and improves the part shape accuracy.It provides a guideline for controlling springback in stretch forming of aircraft skin.展开更多
Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar d...Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.展开更多
The computer aided engineering(CAE) analysis technique has become one of the most important means in modern automobile development due to its remarkably computing capability.With the development of CAE bussiness softw...The computer aided engineering(CAE) analysis technique has become one of the most important means in modern automobile development due to its remarkably computing capability.With the development of CAE bussiness software and intensive research on automotive development process,the CAE technique,which was only used as an auxiliary validation tool in the later product development in the past,is gradually used in each stage of product development now.Furthermore,accurate and fast analysis data can be supplied effectively.Especially in current CAE application, based on some optimization technologies such as sensitivity,feature and topology,the parametric design gradually enables a CAE engineer to be free from the condition which a convention analysis usually lags behind a design,and makes it be parallel to or even anterior to the design.Under the circumstance,the CAE resources can be maximized in each project development department,thereby promoting the project progress and quality,and creating a new philosophy of 'analysis-driven design'.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘Molecular management is a promising technology to face challenges in the refining industry, such as more stringent requirements for product oil and heavier crude oil, and to maximize the value of every molecule in petroleum fractions. To achieve molecular management in refining processes, a novel model that is based on structure oriented lumping(SOL) and group contribution(GC) methods was proposed in this study. SOL method was applied to describe a petroleum fraction with structural increments, and GC method aimed to estimate molecular properties. The latter was achieved by associating rules between SOL structural increments and GC structures. A three-step reconstruction algorithm was developed to build a representative set of molecules from partial analytical data. First, structural distribution parameters were optimized with several properties. Then, a molecular library was created by using the optimized parameters. In the final step, maximum information entropy(MIE) method was applied to obtain a molecular fraction. Two industrial samples were used to validate the method, and the simulation results of the feedstock properties agreed well with the experimental data.
基金Supported by the National Natural Science Foundation of China (No.20436040).
文摘Method for constructing the optimal water supply line and formulas for calculating the targets for single-contaminant regeneration recycling water systems are improved to apply to the situation of variational pararneters in this article. Based on these extending methods, the effect of varying freshwater consumption and regenerated water flow rate on the optimizing results are investigated. The interactions of parameters of regeneration recycling systems are summarized. Finally, all the conclusions are illustrated from the results of mathematical programming through an example.
基金Project(50875265) supported by the National Natural Science Foundation of ChinaProject(20080440992) supported by the Postdoctoral Science Foundation of ChinaProject(2009SK3159) supported by the Technology Support Plan of Hunan Province,China
文摘Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn.
基金supported by the National Key R&D Program of China(No.2018YFB1307900)the Natural Science Foundation of Shanxi Province(Nos.201901D211009,201901D211010)the Technology In⁃novation Foundation of Shanxi University(No.2019L 0177).
文摘Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.
基金This project was sponsored by the Joint Earthquake Science Foundation of CEA(Grant No.103075 and No.104016)
文摘The gestation and occurrence of strong earthquakes are closely related to fault activity, which is not only revealed by abundant experimentation and seismism but also proved by modern seismology. On the Chinese mainland, the relation between earthquake activity and active faults is one of the bases for partitioning potential seismic sources, analyzing the seismotectoulcs and estimating location of strong earthquakes.Due to the nonuniformity of earth media, instability of observation systems and disturbance of the environment, etc, the variety of observational data is complicated, that is, there is no absolutely "normal" or "abnormal", and seismic anomalies can be divided into many mutually exdusive" abnormal states". In different conditions of combined time-spacestrength, determining seismic anomalies by different monomial forecast methods and its efficiency could be different due to the uncertainty of a precursor itself or complexity of the relationship between a precursor and earthquake gestation. It is very difficult to discover and dispose of this difference in actual application in a "two-state" model. But in a "multi-state" model, the difference can be easily reflected and the optimal combination of forecasting parameters for a forecast method can also be determined easily. Based on the "multi-state" precursory model and the optimization method for parameters of earthquake forecast model under the condition of optimal forecast efficiency, the relationship of the spatial location of earthquake with M ≥ 6.0 and active faults in three seismic belts are analyzed. The results demonstrate that in the Hetao Seismic Belt, seismicity is mostly concentrated in the range of 20 km along the fault, the optimization model can forecast the location of potential earthquakes of M ≥ 6.0 near the faults with a relatively high accuracy and the reliability is 0.5 ; while in the Qilian Mt. Seismic Belt, the reliability only reaches 0.14 when we use the model to estimate earthquakes within 30 km range along the faults. The "multi-state" precursory model, the efficiency-evaluating model and the parameter selection of individual earthquake forecast model based on optimal efficiency are of certain revelatory and practicable meanings for developing knowledge about precursors, investigating the laws of earthquake preparation and searching for optimal forecasting methods.
基金Project(50905008)supported by the National Natural Science Foundation of ChinaProject(2007AA041905)supported by the National High-tech Research and Development Program of ChinaProject(YWF-10-01-B08)supported by the Fundamental Research Funds for the Central Universities,China
文摘An optimization method was presented for cold stretch forming of titanium-alloy aircraft skin to determine process parameters and to reduce springback.In the optimization model,a mathematical formulation of stress difference was developed as an indicator of the degree of springback instead of implicit springback analysis.Explicit finite element method(FEM)was used to analyze the forming process and to provide the stress distribution for calculating the amount of the stress indicator.In addition,multi-island genetic algorithm(MGA)was employed to seek the optimal loading condition.A case study was performed to demonstrate the potential of the suggested method.The results show that the optimization design of process parameters effectively reduces the amount of springback and improves the part shape accuracy.It provides a guideline for controlling springback in stretch forming of aircraft skin.
基金Project(51374254) supported by the National Natural Science Foundation of China
文摘Hafnium ethoxide was synthesized using electrochemical method.Optimization experiments were used to optimizevarious parameters namely Et4NBr concentration(c):0.01?0.06mol/L,solution temperature(t):30?78°C,polar distance(D):2.0?4.0cm and current density(J):100?400A/m2.The electrolytic products obtained under optimum conditions of c=0.04mol/L,t=78°C,D=2.0cm and J=100A/m2were further isolated by vacuum distillation under5kPa.The product was characterized byFourier transform infrared(FT-IR)spectra,nuclear magnetic resonance(NMR)spectra.The results indicated that the product washafnium ethoxide.ICP analysis suggested that the content of hafnium ethoxide in the final product exceeded99.997%.Thermalproperties of the product were analyzed by TG/DTG.The vaporization enthalpy of hafnium ethoxide was found to be79.1kJ/mol.The result confirmed that hafnium ethoxide was suitable for the preparation of hafnium oxide by atomic layer deposition.
文摘The computer aided engineering(CAE) analysis technique has become one of the most important means in modern automobile development due to its remarkably computing capability.With the development of CAE bussiness software and intensive research on automotive development process,the CAE technique,which was only used as an auxiliary validation tool in the later product development in the past,is gradually used in each stage of product development now.Furthermore,accurate and fast analysis data can be supplied effectively.Especially in current CAE application, based on some optimization technologies such as sensitivity,feature and topology,the parametric design gradually enables a CAE engineer to be free from the condition which a convention analysis usually lags behind a design,and makes it be parallel to or even anterior to the design.Under the circumstance,the CAE resources can be maximized in each project development department,thereby promoting the project progress and quality,and creating a new philosophy of 'analysis-driven design'.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.