This paper introduces an efficient holistic approach to the design optimization of lightweight structures of braided fiber-reinforced plastic material. The approach aims to mitigate the paradox of making design decisi...This paper introduces an efficient holistic approach to the design optimization of lightweight structures of braided fiber-reinforced plastic material. The approach aims to mitigate the paradox of making design decisions at early development phases, when necessary information is incomplete or lacking detail so as to properly make these decisions. However, expert knowledge is available and though it is imprecise in nature, it can compensate to create useful models. Manufacturing effort for the braiding process has been described by information accumulated via interviews with braiding experts. This information is then modelled using the soft-computing approach by fuzzy-rule-based systems. The resulting models can further be efficiently integrated into the structural design optimization process. A multidisciplinary design optimization is facilitated considering several aspects including manufacturing effort and structural mechanics, which can be used in early design phases leading to more holistic designing and, thereby, unlocking lightweight and cost-reducing potentials. Benefits of this method, including viability and ease of implementation, are proven by investigations on two academic test problems before advancing to the challenging automotive engineering design problem of the roadster A-pillar.展开更多
Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary desig...Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary design optimization methodology is adopted.No special consideration is given to the aircraft itself during the optimization.The main drawback of these methodologies is the huge expanse and the low efficiency.To solve this problem,we put forward to optimize the cruise shape directly based on the fact that the cruise shape can be transformed into jig shape,and a methodology named reverse iteration of structural model(RISM)is proposed to get the aero-structural performance of cruise shape.The main advantage of RISM is that the efficiency can be improved by at least four times compared with loosely-coupled aeroelastic analysis and it maintains almost the same fidelity of loosely-coupled aeroelastic analysis.An optimization framework based on RISM is proposed.The aerodynamic and structural performances can be optimized simultaneously in this framework,so it may lead to the true optimal solution.The aerodynamic performance was predicted by N-S solver in this paper.Test shows that RISM predicts the aerodynamic and structural performances very well.A wing-body configuration was optimized by the proposed optimization framework.The drag and weight of the aircraft are decreased after optimization,which shows the effectiveness of the proposed framework.展开更多
文摘This paper introduces an efficient holistic approach to the design optimization of lightweight structures of braided fiber-reinforced plastic material. The approach aims to mitigate the paradox of making design decisions at early development phases, when necessary information is incomplete or lacking detail so as to properly make these decisions. However, expert knowledge is available and though it is imprecise in nature, it can compensate to create useful models. Manufacturing effort for the braiding process has been described by information accumulated via interviews with braiding experts. This information is then modelled using the soft-computing approach by fuzzy-rule-based systems. The resulting models can further be efficiently integrated into the structural design optimization process. A multidisciplinary design optimization is facilitated considering several aspects including manufacturing effort and structural mechanics, which can be used in early design phases leading to more holistic designing and, thereby, unlocking lightweight and cost-reducing potentials. Benefits of this method, including viability and ease of implementation, are proven by investigations on two academic test problems before advancing to the challenging automotive engineering design problem of the roadster A-pillar.
基金supported by the National Natural Science Foundation of China(Grant Nos.11272005,10902082 and 91016008)the Funds for the Central Universities(Grant No.xjj2014135)partially supported by the open project of State Key Laboratory for Strength and Vibration of Mechanical Structures of Xi’an Jiaotong University(SV2014-KF-10)
文摘Traditional coupled multi-disciplinary design optimization based on computational fluid dynamics/computational structure dynamics(CFD/CSD)aims to optimize the jig shape of aircraft,and general multi-disciplinary design optimization methodology is adopted.No special consideration is given to the aircraft itself during the optimization.The main drawback of these methodologies is the huge expanse and the low efficiency.To solve this problem,we put forward to optimize the cruise shape directly based on the fact that the cruise shape can be transformed into jig shape,and a methodology named reverse iteration of structural model(RISM)is proposed to get the aero-structural performance of cruise shape.The main advantage of RISM is that the efficiency can be improved by at least four times compared with loosely-coupled aeroelastic analysis and it maintains almost the same fidelity of loosely-coupled aeroelastic analysis.An optimization framework based on RISM is proposed.The aerodynamic and structural performances can be optimized simultaneously in this framework,so it may lead to the true optimal solution.The aerodynamic performance was predicted by N-S solver in this paper.Test shows that RISM predicts the aerodynamic and structural performances very well.A wing-body configuration was optimized by the proposed optimization framework.The drag and weight of the aircraft are decreased after optimization,which shows the effectiveness of the proposed framework.