The force-finding process of the cable-net in the deployable mesh reflector antenna,AstroMesh,is investigated to optimize the pretension distribution and satisfy surface accuracy.Since the geometry and topology of the...The force-finding process of the cable-net in the deployable mesh reflector antenna,AstroMesh,is investigated to optimize the pretension distribution and satisfy surface accuracy.Since the geometry and topology of the mesh reflector antennas are given as a constraint with the boundary condition assumed to be fixed,the force-finding process can be performed on a constant equilibrium matrix to obtain a feasible set of forces.Then,the equilibrium matrix can be rewritten in terms of force modes after the singular value decomposition.The object of force design is to minimize the deviation of member forces and,therefore,the surface accuracy can be guaranteed by transforming an optimization of the distribution of prestresses into an optimization with multiple prestress modes.Finally,numerical examples solved by the sequential quadratic programming(SQP)algorithm and the genetic algorithm are given to validate the efficiency of the proposed method.The comparison results show that the genetic method can converge to the optimized point after approximately 50 iterations while the converging process of the sequential quadratic programming method depends largely on the initial points.展开更多
基金The National Natural Science Foundation of China(No.51308106,51578133)the Natural Science Foundation of Jiangsu Province(No.BK20130614)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092120018)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Excellent Young Teachers Program of Southeast Universitythe Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX18_0105)
文摘The force-finding process of the cable-net in the deployable mesh reflector antenna,AstroMesh,is investigated to optimize the pretension distribution and satisfy surface accuracy.Since the geometry and topology of the mesh reflector antennas are given as a constraint with the boundary condition assumed to be fixed,the force-finding process can be performed on a constant equilibrium matrix to obtain a feasible set of forces.Then,the equilibrium matrix can be rewritten in terms of force modes after the singular value decomposition.The object of force design is to minimize the deviation of member forces and,therefore,the surface accuracy can be guaranteed by transforming an optimization of the distribution of prestresses into an optimization with multiple prestress modes.Finally,numerical examples solved by the sequential quadratic programming(SQP)algorithm and the genetic algorithm are given to validate the efficiency of the proposed method.The comparison results show that the genetic method can converge to the optimized point after approximately 50 iterations while the converging process of the sequential quadratic programming method depends largely on the initial points.