In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of ...In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.展开更多
Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selec...Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.展开更多
Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FE...Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.展开更多
A new process for the co-production of vinyl acetate monomer and acetic acid from ethane feedstock was studied. Various configurations were proposed and simulation results were given for each case to optimize process ...A new process for the co-production of vinyl acetate monomer and acetic acid from ethane feedstock was studied. Various configurations were proposed and simulation results were given for each case to optimize process variables. This new process offers an overall yield values above 70% with minimum separation steps involved and the possibility of utilities integration. The process does not involve any CO production, thus becoming environmentally more favorable. The initial capital investment of the proposed process is much lower compared to the conventional route.展开更多
文摘In order to explore the technology and effects of reducing nitrogen and potassium fertilizer applications in double-cropping rice,a field plot experiment was conducted to study the effects of optimized application of nitrogen and potassium fertilizers combined with returning Chinese milk vetch and straw to fields on yield,fertilizer utilization efficiency,net photosynthetic rate(Pn),stomatal conductance(Gs),intercellular CO_(2) concentration(Ci),chlorophyll content(SPAD value)and soil physical and chemical properties in late rice harvest period.The results showed that the optimized application of nitrogen and potassium fertilizers combined with the integrated technology of Chinese milk vetch and straw co-returning to the field could enhance the photosynthetic efficiency of double-cropping rice,increase rice yield,and enhance soil biological activity,especially T4 treatment involving the returning of Chinese milk vetch and straw to the field instead of 30%nitrogen fertilizer achieved the highest rice yield,fertilizer use efficiency,net photosynthetic rate and soil biological activity.Compared with the conventional fertilization treatment T2,the total rice yield of T4 treatment increased by 4.1%,among which the early rice and late rice increased by 6.3%and 2.4%,respectively;Pn,Gs and SPAD values of flag leaves at full heading stage significantly increased,and the contents of soil active organic carbon,alkali hydrolyzed nitrogen,available phosphorus and readily available potassium significantly increased.
基金supported in part by Important National Science and Technology Specific Projects (Grants Nos. 2011 ZX 0300300104, 2012ZX03003012)Fundamental Research Funds for Central Universities (Grant Nos. 72125377)
文摘Device-to-device(D2D) communications can be underlaid with a cellular infrastructure to increase resource utilization, improve user throughput and save battery energy. In such networks, power allocation and mode selection are crucial problems. To address the joint optimization of power and mode selection under imperfect CSI, we propose an optimal, energy-aware joint power allocation and mode selection(JPAMS) scheme. First, we derive the closed-form solution for the power minimization for both D2 D and cellular links while satisfying different quality of service(Qo S) constraints. Second, we address the mode selection problem in presence of imperfect CSI, based on the derived power allocation. Moreover, the theoretical analysis and simulation results are presented to evaluate the proposed scheme for the D2 D communications.
基金Supported by the National Natural Science Foundation Special Originality Innovation Research Colony of China(50621403)
文摘Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.
文摘A new process for the co-production of vinyl acetate monomer and acetic acid from ethane feedstock was studied. Various configurations were proposed and simulation results were given for each case to optimize process variables. This new process offers an overall yield values above 70% with minimum separation steps involved and the possibility of utilities integration. The process does not involve any CO production, thus becoming environmentally more favorable. The initial capital investment of the proposed process is much lower compared to the conventional route.