期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用优化特征子集选取和改进SVR的养殖禽舍温度预测算法
1
作者
李继东
王强辉
《中国农机化学报》
北大核心
2023年第2期91-98,共8页
为提高养殖禽舍温度预测算精度,降低数据冗余度和差异性对预测结果的影响,提出一种基于智能优化特征子集选取和模糊聚类改进SVR(Support Vector Regression)的温度预测模型。首先,构建最优特征子集选取模型,通过设计最优特征子集选取指...
为提高养殖禽舍温度预测算精度,降低数据冗余度和差异性对预测结果的影响,提出一种基于智能优化特征子集选取和模糊聚类改进SVR(Support Vector Regression)的温度预测模型。首先,构建最优特征子集选取模型,通过设计最优特征子集选取指标,以降低特征之间冗余度和数据维度;采用改进的离散灰狼算法对特征子集选取模型进行求解,以实现最优特征子集选取。其次,建立模糊聚类改进SVR预测机制,通过设计多度量核FCM(Fuzzy C-means)算法,以实现数据样本自动分类;提出与数据样本分类相对应的SVR预测算法,并采用灰狼算法对SVR参数进行优化,最大程度降低样本数据差异性对预测精度的影响。最后,融合最优特征子集选取和模糊聚类改进SVR预测机制,以实现养殖禽舍温度高精度预测。仿真结果表明,该算法实现不同季节条件下养殖禽舍温度的高精度预测,相比于其他预测算法,预测精度提高约23.7%~37.8%。所提养殖禽舍温度预测算法具有良好的预测性能,具有一定的推广应用价值。
展开更多
关键词
养殖禽舍
温度预测
灰狼算法
SVR
FCM
优化特征子集选取
下载PDF
职称材料
题名
采用优化特征子集选取和改进SVR的养殖禽舍温度预测算法
1
作者
李继东
王强辉
机构
河南林业职业学院
河南农业大学
出处
《中国农机化学报》
北大核心
2023年第2期91-98,共8页
基金
河南省技术创新引导专项项目(17CX892503)。
文摘
为提高养殖禽舍温度预测算精度,降低数据冗余度和差异性对预测结果的影响,提出一种基于智能优化特征子集选取和模糊聚类改进SVR(Support Vector Regression)的温度预测模型。首先,构建最优特征子集选取模型,通过设计最优特征子集选取指标,以降低特征之间冗余度和数据维度;采用改进的离散灰狼算法对特征子集选取模型进行求解,以实现最优特征子集选取。其次,建立模糊聚类改进SVR预测机制,通过设计多度量核FCM(Fuzzy C-means)算法,以实现数据样本自动分类;提出与数据样本分类相对应的SVR预测算法,并采用灰狼算法对SVR参数进行优化,最大程度降低样本数据差异性对预测精度的影响。最后,融合最优特征子集选取和模糊聚类改进SVR预测机制,以实现养殖禽舍温度高精度预测。仿真结果表明,该算法实现不同季节条件下养殖禽舍温度的高精度预测,相比于其他预测算法,预测精度提高约23.7%~37.8%。所提养殖禽舍温度预测算法具有良好的预测性能,具有一定的推广应用价值。
关键词
养殖禽舍
温度预测
灰狼算法
SVR
FCM
优化特征子集选取
Keywords
poultry house
temperature prediction
Gray Wolf algorithm
SVR
FCM
optimized feature subset selection
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用优化特征子集选取和改进SVR的养殖禽舍温度预测算法
李继东
王强辉
《中国农机化学报》
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部