最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS...最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。展开更多
为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,...为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。展开更多
文摘最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。
文摘为提升变压器故障预测的准确性,提出了一种基于灰狼(Grey Wolf Optimization,GWO)算法优化支持向量机(Support Vector Machine,SVM)的变压器故障预测方法。采用GWO算法对SVM进行优化,建立了基于GWO-SVM变压器油中溶解特征气体预测模型,根据油中溶解特征气体随时间变化的特点,通过求取嵌入维数确定模型输入量。文章采用实际运行变压器的油中溶解气体分析(Dissolved Gas Analysis,DGA)数据进行仿真分析,并与其他预测方法对比,结果表明,GWO-SVM模型对H 2预测平均相对误差和均方根误差分别为4.38%和9.48μL/L,预测精度高于其他方法。在变压器油中溶解特征气体含量预测的基础上,利用IEC三比值法进行变压器故障诊断,诊断结果与变压器实际故障一致,验证了变压器故障预测方法的实用性和有效性。