The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage refl...The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.展开更多
Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural...Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural network under partial least squares framework (ARX-NNPLS), in which less specific knowledge of the process is required but the input and output data. To represent the dynamic and nonlinear behavior of the process, the ARX combined with neural network is used in the partial least squares (PLS) inner model between input and output latent variables. In the proposed dynamic optimization strategy based on the ARX-NNPLS model, neither parameterization nor iterative solving process for DAEs is needed as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process, and the computing time is greatly reduced compared to conventional control vector parameterization method. To demonstrate the ARX-NNPLS model based optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is taken into account. The optimization results show that the final optimal trajectory of quality index determined by the new approach moves faster to the target values and the computing time is much less.展开更多
According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we intro...According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.展开更多
In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface mo...In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver(Numeca Fine). Data points for response evaluations were selected by improved distributed hypercube sampling (IHS) and the 3-D Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. To maximize the adiabatic efficiency, the genetic algorithm was applied to the response surface model to perform global optimization to achieve the optimum design of NASA Stage 35. An optimum leading edge line was found, which produced a new 3-D rotor blade combined with sweep and lean, and a new stator one with skew. It is concluded that the proposed strategy can provide a reliable method for design optimization of turbomachinery blades at reasonable computing cost.展开更多
An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision ...An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.展开更多
基金sponsored by the 863 Program (Grant No.2006AA06Z206)the 973 Program (Grant No.2007CB209605)
文摘The common reflection surface (CRS) stack is based on the local dip of the reflector and the reflection response within the first Fresnel zone. During the CRS stack all the information given by a multi-coverage reflection dataset can be successfully utilized. By now, it is known as the best zero-offset (ZO) imaging method. In this paper high quality CRS kinematic parameter sections are obtained by a modified CRS optimization strategy. Then stack apertures are calculated using the parameter sections which finally results in the realization of the CRS stack based on optimized aperture. Thus the advantages of CRS parameters are fully developed. Application to model and real seismic data reveals that, compared with the image section by a conventional CRS stack, the image section by CRS stack based on an optimized aperture improves both the signal-to-noise ratio and the continuity of reflection events.
基金Supported by the National Natural Science Foundation of China (61174114)the National High Technology Research and Development Program of China (2007AA04Z168, 2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China (20050335018)
文摘Since it is often difficult to build differential algebraic equations (DAEs) for chemical processes, a new data-based modeling approach is proposed using ARX (AutoRegressive with eXogenous inputs) combined with neural network under partial least squares framework (ARX-NNPLS), in which less specific knowledge of the process is required but the input and output data. To represent the dynamic and nonlinear behavior of the process, the ARX combined with neural network is used in the partial least squares (PLS) inner model between input and output latent variables. In the proposed dynamic optimization strategy based on the ARX-NNPLS model, neither parameterization nor iterative solving process for DAEs is needed as the ARX-NNPLS model gives a proper representation for the dynamic behavior of the process, and the computing time is greatly reduced compared to conventional control vector parameterization method. To demonstrate the ARX-NNPLS model based optimization strategy, the polyethylene grade transition in gas phase fluidized-bed reactor is taken into account. The optimization results show that the final optimal trajectory of quality index determined by the new approach moves faster to the target values and the computing time is much less.
基金Supported by the National Natural Science Foundation (70971059) the Liaoning Provincial Programs lbr Science and Technology Development (2011229011)
文摘According to the complex nonlinear relationship between gas emission and its effect factors, and the shortcomings that basic colony algorithm is slow, prone to early maturity and stagnation during the search, we introduced a hybrid optimization strategy into a max-rain ant colony algorithm, then use this improved ant colony algorithm to estimate the scope of RBF network parameters. According to the amount of pheromone of discrete points, the authors obtained from the interval of net- work parameters, ants optimize network parameters. Finally, local spatial expansion is introduced to get further optimization of the network. Therefore, we obtain a better time efficiency and solution efficiency optimization model called hybrid improved max-min ant system (H1-MMAS). Simulation experiments, using these theory to predict the gas emission from the working face, show that the proposed method have high prediction feasibility and it is an effective method to predict gas emission.
文摘In order to shorten the design period, the paper describes a new optimization strategy for computationally expensive design optimization of turbomachinery, combined with design of experiment (DOE), response surface models (RSM), genetic algorithm (GA) and a 3-D Navier-Stokes solver(Numeca Fine). Data points for response evaluations were selected by improved distributed hypercube sampling (IHS) and the 3-D Navier-Stokes analysis was carried out at these sample points. The quadratic response surface model was used to approximate the relationships between the design variables and flow parameters. To maximize the adiabatic efficiency, the genetic algorithm was applied to the response surface model to perform global optimization to achieve the optimum design of NASA Stage 35. An optimum leading edge line was found, which produced a new 3-D rotor blade combined with sweep and lean, and a new stator one with skew. It is concluded that the proposed strategy can provide a reliable method for design optimization of turbomachinery blades at reasonable computing cost.
基金the National Natural Science Foundation of China (No. 50873060)
文摘An integrated optimization strategy based on Kriging model and multi-objective particle swarm optimization(PSO) algorithm was constructed.As a new surrogate model technology,Kriging model has better fitting precision for nonlinear problem.The Kriging model was adopted to replace computer aided engineering(CAE) simulation as fitness function of multi-objective PSO algorithm,and the computation cost can be reduced greatly.By introducing multi-objective handling mechanism of crowding distance and mutation operator to multiobjective PSO algorithm,the entire Pareto front can be approximated better.It is shown that the multi-objective optimization strategy can get higher solving accuracy and computation efficiency under small sample.