Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is ...Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters. This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.展开更多
A modified Gurson-Tvergaard-Needleman (GTN) model that accounts for the mixed (isotropic and kinematic) hardening of cast steel GS-20Mn5V was developed and implemented in the finite dement program ABAQUS/Standard ...A modified Gurson-Tvergaard-Needleman (GTN) model that accounts for the mixed (isotropic and kinematic) hardening of cast steel GS-20Mn5V was developed and implemented in the finite dement program ABAQUS/Standard via a user-defined material subroutine UMAT. This model couples the stress state and damage evolution (pore volume fraction increase) by a classic method that assumes that the total void volume fraction is divided into a nucleation and a growth part. A parametric study was conducted to assess the effect of modified GTN model parameters on mechanical properties such as the nucleation, growth and coalescence of voids and to obtain the optimal parameter combination by the orthogonal test method. The predicted load-displacement curves of notched specimens with the optimal parameters are favorably compared to the experimental curves. Therefore, the modified GTN model can be used to predict the damage evaluation and fracture behavior of GS-20Mn5V.展开更多
Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk...Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.展开更多
The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility ...The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.展开更多
The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency...The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.展开更多
The prediction process often runs with small samples and under-sufficient information.To target this problem,we propose a performance comparison study that combines prediction and optimization algorithms based on expe...The prediction process often runs with small samples and under-sufficient information.To target this problem,we propose a performance comparison study that combines prediction and optimization algorithms based on experimental data analysis.Through a large number of prediction and optimization experiments,the accuracy and stability of the prediction method and the correction ability of the optimization method are studied.First,five traditional single-item prediction methods are used to process small samples with under-sufficient information,and the standard deviation method is used to assign weights on the five methods for combined forecasting.The accuracy of the prediction results is ranked.The mean and variance of the rankings reflect the accuracy and stability of the prediction method.Second,the error elimination prediction optimization method is proposed.To make,the prediction results are corrected by error elimination optimization method(EEOM),Markov optimization and two-layer optimization separately to obtain more accurate prediction results.The degree improvement and decline are used to reflect the correction ability of the optimization method.The results show that the accuracy and stability of combined prediction are the best in the prediction methods,and the correction ability of error elimination optimization is the best in the optimization methods.The combination of the two methods can well solve the problem of prediction with small samples and under-sufficient information.Finally,the accuracy of the combination of the combined prediction and the error elimination optimization is verified by predicting the number of unsafe events in civil aviation in a certain year.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a ...In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.展开更多
Based on optimization wharf structure type of triangle flame pier proposed, namely" Spatial triangular flame pier + Big span bent which taking Slant supports" Simulating three-dimensional pier model of a variety of...Based on optimization wharf structure type of triangle flame pier proposed, namely" Spatial triangular flame pier + Big span bent which taking Slant supports" Simulating three-dimensional pier model of a variety of conditions in the actual loading by structural finite element software. Under the guidance of the three-dimensional structure of the most unfavorable load combination algorithm, three-dimensional combination algorithm is applied to the new structure by the MATLAB software programming. Search and calculate the most unfavorable combination of action effects and the corresponding intemal force of the main member, checking the feasibility of the three-dimensional algorithms, Calculating the new wharf structure structural features and stability, Providing numerical reference for the design of this sort of wharf.展开更多
The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode...The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode is fixed, either playback or real-time transmission. Considering the characteristic of the problem, a multi-satellite real-time and playback data transmission scheduling model is established and a novel algorithm based on quantum discrete particle swarm optimization(QDPSO)is proposed. Furthermore, we design the longest compatible transmission chain mutation operator to enhance the performance of the algorithm. Finally, some experiments are implemented to validate correctness and practicability of the proposed algorithm.展开更多
As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of wate...As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of water distribution network usually ignores the influence of earthquake,resulting in water stoppage in large area during many recent strong earthquakes.This study introduced a seismic design approach of water distribution network,i.e.,topology optimization design.With network topology as the optimization goal and seismic reliability as the constraint,a topology optimization model for designing water distribution network under earthquake is established.Meanwhile,two element investment importance indexes,a pipeline investment importance index and a diameter investment importance index,are introduced to evaluate the importance of pipelines in water distribution network.Then,four combinational optimization algorithms,a genetic algorithm,a simulated annealing genetic algorithm,an ant colony algorithm and a particle swarm algorithm,are introduced to solve this optimization model.Moreover,these optimization algorithms are used to optimize a network with 19 nodes and 27 pipelines.The optimization results of these algorithms are compared with each other.展开更多
The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem wi...The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.展开更多
文摘Hopfield neural network is a single layer feedforward neural network. Hopfield network requires some control parameters to be carefully selected, else the network is apt to converge to local minimum. An ant system is a nature inspired meta heuristic algorithm. It has been applied to several combinatorial optimization problems such as Traveling Salesman Problem, Scheduling Problems, etc. This paper will show an ant system may be used in tuning the network control parameters by a group of cooperated ants. The major advantage of this network is to adjust the network parameters automatically, avoiding a blind search for the set of control parameters. This network was tested on two TSP problems, 5 cities and 10 cities. The results have shown an obvious improvement.
基金The National Key Research and Development Program of China(No.2017YFC0805103)the National Natural Science Foundation of China(No.51578137,51438002,51108075)the Open Research Fund Program of Jiangsu Key Laboratory of Engineering Mechanics
文摘A modified Gurson-Tvergaard-Needleman (GTN) model that accounts for the mixed (isotropic and kinematic) hardening of cast steel GS-20Mn5V was developed and implemented in the finite dement program ABAQUS/Standard via a user-defined material subroutine UMAT. This model couples the stress state and damage evolution (pore volume fraction increase) by a classic method that assumes that the total void volume fraction is divided into a nucleation and a growth part. A parametric study was conducted to assess the effect of modified GTN model parameters on mechanical properties such as the nucleation, growth and coalescence of voids and to obtain the optimal parameter combination by the orthogonal test method. The predicted load-displacement curves of notched specimens with the optimal parameters are favorably compared to the experimental curves. Therefore, the modified GTN model can be used to predict the damage evaluation and fracture behavior of GS-20Mn5V.
文摘Portfolio selection is one of the major capital allocation and budgeting issues in financial management, and a variety of models have been presented for optimal selection. Semi-variance is usually considered as a risk factor in drawing up an efficient frontier and the optimal portfolio. Since semi-variance offers a better estimation of the actual risk portfolio, it was used as a measure to approximate the risk of investment in this work. The optimal portfolio selection is one of the non-deterministic polynomial(NP)-hard problems that have not been presented in an exact algorithm, which can solve this problem in a polynomial time. Meta-heuristic algorithms are usually used to solve such problems. A novel hybrid harmony search and artificial bee colony algorithm and its application were introduced in order to draw efficient frontier portfolios. Computational results show that this algorithm is more successful than the harmony search method and genetic algorithm. In addition, it is more accurate in finding optimal solutions at all levels of risk and return.
基金supported by the National Natural Science Foundation of China (No. 61741102, No. 61471164)China Scholarship Council
文摘The problem of joint radio and cloud resources allocation is studied for heterogeneous mobile cloud computing networks. The objective of the proposed joint resource allocation schemes is to maximize the total utility of users as well as satisfy the required quality of service(QoS) such as the end-to-end response latency experienced by each user. We formulate the problem of joint resource allocation as a combinatorial optimization problem. Three evolutionary approaches are considered to solve the problem: genetic algorithm(GA), ant colony optimization with genetic algorithm(ACO-GA), and quantum genetic algorithm(QGA). To decrease the time complexity, we propose a mapping process between the resource allocation matrix and the chromosome of GA, ACO-GA, and QGA, search the available radio and cloud resource pairs based on the resource availability matrixes for ACOGA, and encode the difference value between the allocated resources and the minimum resource requirement for QGA. Extensive simulation results show that our proposed methods greatly outperform the existing algorithms in terms of running time, the accuracy of final results, the total utility, resource utilization and the end-to-end response latency guaranteeing.
基金Project(50775089)supported by the National Natural Science Foundation of ChinaProject(2007AA04Z190,2009AA043301)supported by the National High Technology Research and Development Program of ChinaProject(2005CB724100)supported by the National Basic Research Program of China
文摘The material distribution routing problem in the manufacturing system is a complex combinatorial optimization problem and its main task is to deliver materials to the working stations with low cost and high efficiency. A multi-objective model was presented for the material distribution routing problem in mixed manufacturing systems, and it was solved by a hybrid multi-objective evolutionary algorithm (HMOEA). The characteristics of the HMOEA are as follows: 1) A route pool is employed to preserve the best routes for the population initiation; 2) A specialized best?worst route crossover (BWRC) mode is designed to perform the crossover operators for selecting the best route from Chromosomes 1 to exchange with the worst one in Chromosomes 2, so that the better genes are inherited to the offspring; 3) A route swap mode is used to perform the mutation for improving the convergence speed and preserving the better gene; 4) Local heuristics search methods are applied in this algorithm. Computational study of a practical case shows that the proposed algorithm can decrease the total travel distance by 51.66%, enhance the average vehicle load rate by 37.85%, cut down 15 routes and reduce a deliver vehicle. The convergence speed of HMOEA is faster than that of famous NSGA-II.
基金This work was supported by the Scientific Research Projects of Tianjin Educational Committee(No.2020KJ029)。
文摘The prediction process often runs with small samples and under-sufficient information.To target this problem,we propose a performance comparison study that combines prediction and optimization algorithms based on experimental data analysis.Through a large number of prediction and optimization experiments,the accuracy and stability of the prediction method and the correction ability of the optimization method are studied.First,five traditional single-item prediction methods are used to process small samples with under-sufficient information,and the standard deviation method is used to assign weights on the five methods for combined forecasting.The accuracy of the prediction results is ranked.The mean and variance of the rankings reflect the accuracy and stability of the prediction method.Second,the error elimination prediction optimization method is proposed.To make,the prediction results are corrected by error elimination optimization method(EEOM),Markov optimization and two-layer optimization separately to obtain more accurate prediction results.The degree improvement and decline are used to reflect the correction ability of the optimization method.The results show that the accuracy and stability of combined prediction are the best in the prediction methods,and the correction ability of error elimination optimization is the best in the optimization methods.The combination of the two methods can well solve the problem of prediction with small samples and under-sufficient information.Finally,the accuracy of the combination of the combined prediction and the error elimination optimization is verified by predicting the number of unsafe events in civil aviation in a certain year.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
基金Supported by the National Basic Research Program of China (No. 2007CB310606)
文摘In this paper,a genetic algorithm (GA) is investigated to deal with cell-by-cell dynamic spectrumallocation (DSA) in the heterogeneous scenario with temporal and spatial traffic demand changes,whichis also known as a difficult combinatorial optimization problem.A new two-dimensional chromosome encodingscheme is defined according to characteristics of the heterogeneous scenario,which prevents forminginvalid solutions during the genetic operation and enables much faster convergence.A novel randomcoloring gene generation function is presented which is the basic operation for initialization and mutationin the genetic algorithm.Simulative comparison demonstrates that the proposed GA-based cell-by-cellDSA outperforms the conventional contiguous DSA scheme both in terms of spectral efficiency gain andquality of service (QoS) satisfaction.
文摘Based on optimization wharf structure type of triangle flame pier proposed, namely" Spatial triangular flame pier + Big span bent which taking Slant supports" Simulating three-dimensional pier model of a variety of conditions in the actual loading by structural finite element software. Under the guidance of the three-dimensional structure of the most unfavorable load combination algorithm, three-dimensional combination algorithm is applied to the new structure by the MATLAB software programming. Search and calculate the most unfavorable combination of action effects and the corresponding intemal force of the main member, checking the feasibility of the three-dimensional algorithms, Calculating the new wharf structure structural features and stability, Providing numerical reference for the design of this sort of wharf.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode is fixed, either playback or real-time transmission. Considering the characteristic of the problem, a multi-satellite real-time and playback data transmission scheduling model is established and a novel algorithm based on quantum discrete particle swarm optimization(QDPSO)is proposed. Furthermore, we design the longest compatible transmission chain mutation operator to enhance the performance of the algorithm. Finally, some experiments are implemented to validate correctness and practicability of the proposed algorithm.
基金supported by the Ministry of Science and Technology of China (Grant No. SLDRCE09-B-12)the Natural Science Funds for Young Scholars of China (Grant No.50808144)
文摘As an essential lifeline engineering system,water distribution network should provide enough water to maintain people's life after earthquake in addition to working under daily operation.However,the design of water distribution network usually ignores the influence of earthquake,resulting in water stoppage in large area during many recent strong earthquakes.This study introduced a seismic design approach of water distribution network,i.e.,topology optimization design.With network topology as the optimization goal and seismic reliability as the constraint,a topology optimization model for designing water distribution network under earthquake is established.Meanwhile,two element investment importance indexes,a pipeline investment importance index and a diameter investment importance index,are introduced to evaluate the importance of pipelines in water distribution network.Then,four combinational optimization algorithms,a genetic algorithm,a simulated annealing genetic algorithm,an ant colony algorithm and a particle swarm algorithm,are introduced to solve this optimization model.Moreover,these optimization algorithms are used to optimize a network with 19 nodes and 27 pipelines.The optimization results of these algorithms are compared with each other.
文摘The authors present a semi-definite relaxation algorithm for the scheduling problem with controllable times on a single machine. Their approach shows how to relate this problem with the maximum vertex-cover problem with kernel constraints (MKVC).The established relationship enables to transfer the approximate solutions of MKVCinto the approximate solutions for the scheduling problem. Then, they show how to obtain an integer approximate solution for MKVC based on the semi-definite relaxation and randomized rounding technique.