Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbin...Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.展开更多
Under the RHO (renewable heat obligation), public buildings in the Republic of Korea must achieve an 11% overall reduction to thermal energy consumption in buildings more than 10,0O0 m^2. RETScreen Plus is a freely ...Under the RHO (renewable heat obligation), public buildings in the Republic of Korea must achieve an 11% overall reduction to thermal energy consumption in buildings more than 10,0O0 m^2. RETScreen Plus is a freely available software tool developed by the Canadian Government which can be used to develop energy baselines of clean energy technologies. Using curve-fitting and statistical methods like CUSUM, the software can combine actual energy performance with near real time weather information from NASA. We developed a method to simulate the performance of a GSHP (ground source heat pump). The three distinct energy zones involve heating, no-energy, and cooling. RETScreen Plus methodology is used to develop curve fits for each distinct zone as it builds a correlation with NASA satellite data. The model then factors the impact of ICT (information and control technologies) as a means to improve and lower the building's energy consumption. Two values of COP (coefficient of performance) are used--the first is a standard ICT COP, while the second is an improved ICT COP with a smart controller. This methodology can then be expanded to incorporate current and future smart meter technologies, time of use rates, energy price signals, demand response and electricity storage options. In summary, this methodology enables a building owner or energy conservation official to quickly and accurately determine the baseline energy for a building and the potential impacts of smart ICT technologies, especially for buildings equipped with GSHP technologies.展开更多
文摘Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.
文摘Under the RHO (renewable heat obligation), public buildings in the Republic of Korea must achieve an 11% overall reduction to thermal energy consumption in buildings more than 10,0O0 m^2. RETScreen Plus is a freely available software tool developed by the Canadian Government which can be used to develop energy baselines of clean energy technologies. Using curve-fitting and statistical methods like CUSUM, the software can combine actual energy performance with near real time weather information from NASA. We developed a method to simulate the performance of a GSHP (ground source heat pump). The three distinct energy zones involve heating, no-energy, and cooling. RETScreen Plus methodology is used to develop curve fits for each distinct zone as it builds a correlation with NASA satellite data. The model then factors the impact of ICT (information and control technologies) as a means to improve and lower the building's energy consumption. Two values of COP (coefficient of performance) are used--the first is a standard ICT COP, while the second is an improved ICT COP with a smart controller. This methodology can then be expanded to incorporate current and future smart meter technologies, time of use rates, energy price signals, demand response and electricity storage options. In summary, this methodology enables a building owner or energy conservation official to quickly and accurately determine the baseline energy for a building and the potential impacts of smart ICT technologies, especially for buildings equipped with GSHP technologies.