期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
优化自适应控制在铣削加工中的应用
1
作者 陈玉良 赵永生 《装备制造技术》 2007年第4期95-96,共2页
通过应用优化自适应控制对铣削加工中加工参数的主要因素进行在线测量,分析计算并修正控制参数使预先给定的评价函数成为最佳,从而大幅度提高生产率和加工精度。人工神经网络在铣削加工优化自适应控制中的成功应用使自适应控制成为智能... 通过应用优化自适应控制对铣削加工中加工参数的主要因素进行在线测量,分析计算并修正控制参数使预先给定的评价函数成为最佳,从而大幅度提高生产率和加工精度。人工神经网络在铣削加工优化自适应控制中的成功应用使自适应控制成为智能制造系统的一大突破。 展开更多
关键词 铣削加工 优化自适应控制 加工精度 人工神经网络
下载PDF
自由漂浮空间机器人末端轨迹优化自适应控制 被引量:2
2
作者 羊帆 张国良 +1 位作者 田琦 王小建 《控制与决策》 EI CSCD 北大核心 2018年第9期1699-1707,共9页
惯性参数不确定情况下的自由漂浮空间机器人(FFSR)轨迹跟踪控制是当前FFSR自主控制研究的重点与难点之一.针对该问题,提出一种FFSR末端轨迹优化自适应跟踪控制方法.该方法首先基于离散状态依赖黎卡提方程(DSDRE),设计两级DSDRE优化跟踪... 惯性参数不确定情况下的自由漂浮空间机器人(FFSR)轨迹跟踪控制是当前FFSR自主控制研究的重点与难点之一.针对该问题,提出一种FFSR末端轨迹优化自适应跟踪控制方法.该方法首先基于离散状态依赖黎卡提方程(DSDRE),设计两级DSDRE优化跟踪控制器,然后在控制器输出基础上,通过求解有约束条件下的非线性优化问题实现FFSR惯性参数的辨识,进而根据辨识结果调整控制器相关参数,实现FFSR末端轨迹的优化自适应跟踪控制.最后,采用平面两连杆FFSR模型进行仿真,验证了所提出方法的有效性. 展开更多
关键词 自由漂浮空间机器人 跟踪控制 参数辨识 优化自适应控制
原文传递
圆锯自适应控制优化
3
作者 王革思 潘凤萍 《黑龙江电子技术》 1996年第4期1-4,共4页
本文介绍了一种圆锯自适应控制优化的方法。在一定的环境下,这种方法能使圆锯按照给定的表面粗糙度生产木材。
关键词 圆锯 自适应控制优化 木材加工
下载PDF
圆锯的自适应控制优化
4
作者 蒋利民 《林业月报》 1996年第2期21-22,共2页
关键词 木材加工自动化 圆锯 自适应控制优化系统 工件传输速度 声幅射计数率 木材表面加工粗糙度
全文增补中
Harmony search algorithm with differential evolution based control parameter co-evolution and its application in chemical process dynamic optimization 被引量:1
5
作者 范勤勤 王循华 颜学峰 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2227-2237,共11页
A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rat... A modified harmony search algorithm with co-evolutional control parameters(DEHS), applied through differential evolution optimization, is proposed. In DEHS, two control parameters, i.e., harmony memory considering rate and pitch adjusting rate, are encoded as a symbiotic individual of an original individual(i.e., harmony vector). Harmony search operators are applied to evolving the original population. DE is applied to co-evolving the symbiotic population based on feedback information from the original population. Thus, with the evolution of the original population in DEHS, the symbiotic population is dynamically and self-adaptively adjusted, and real-time optimum control parameters are obtained. The proposed DEHS algorithm has been applied to various benchmark functions and two typical dynamic optimization problems. The experimental results show that the performance of the proposed algorithm is better than that of other HS variants. Satisfactory results are obtained in the application. 展开更多
关键词 harmony search differential evolution optimization CO-EVOLUTION self-adaptive control parameter dynamic optimization
下载PDF
A Grey Wolf Optimization-Based Tilt Tri-rotor UAV Altitude Control in Transition Mode 被引量:2
6
作者 MA Yan WANG Yingxun +2 位作者 CAI Zhihao ZHAO Jiang LIU Ningjun 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期186-200,共15页
To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt ... To solve the problem of altitude control of a tilt tri-rotor unmanned aerial vehicle(UAV)in the transition mode,this study presents a grey wolf optimization(GWO)based neural network adaptive control scheme for a tilt trirotor UAV in the transition mode.Firstly,the nonlinear model of the tilt tri-rotor UAV is established.Secondly,the tilt tri-rotor UAV altitude controller and attitude controller are designed by a neural network adaptive control method,and the GWO algorithm is adopted to optimize the parameters of the neural network and the controllers.Thirdly,two altitude control strategies are designed in the transition mode.Finally,comparative simulations are carried out to demonstrate the effectiveness and robustness of the proposed control scheme. 展开更多
关键词 tilt tri-rotor unmanned aerial vehicle altitude control neural network adaptive control grey wolf optimization(GWO)
下载PDF
Neuro-fuzzy predictive control for nonlinear application
7
作者 陈东祥 王刚 吕世霞 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第6期763-766,共4页
Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. ... Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to reduce the model errors caused by changes of the process under control. To cope with the difficult problem of nonlinear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition. 展开更多
关键词 model predictive control fuzzy neural network nonlinear optimization adaptive control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部