The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW...The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.展开更多
Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented f...Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.展开更多
The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far a...The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.展开更多
Although Alternate Parallel Receiver (APRX) could effectively improve the maximum demodulating rate of the receiver, its frequency domain processing module consumes a large amount of multiplication units when the numb...Although Alternate Parallel Receiver (APRX) could effectively improve the maximum demodulating rate of the receiver, its frequency domain processing module consumes a large amount of multiplication units when the number of parallel input channels is large, making it unsuitable for use on FPGA software defi ned radio platforms. This paper proposes an optimization scheme by introducing partitioned convolution and exploring the spectrum characteristic of the APRX input data, reducing the usage of multipliers greatly. After the optimization, the number of real multipliers used in the frequency-domain processing module of the 16-ary APRX is reduced from about 576 to 68, with little performance loss. This optimized APRX is fairly suitable for FPGA software defi ned radio platform applications.展开更多
In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to ...In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.展开更多
Research and development within the windsurfing field is comprised purely of previous experience, prototype building and testing on the water. The use of Computer Aided Design (CAD) systems and simulation packages c...Research and development within the windsurfing field is comprised purely of previous experience, prototype building and testing on the water. The use of Computer Aided Design (CAD) systems and simulation packages can significantly help in the design and testing phases by optimizing the design before a prototype is built. In the paper, supported by these software tools, the authors show a new patented system, named iDO, developed with the aim to stabilize the windsurf, to allow reducing the initial difficulties that a beginner meets in the learning phase. The design process, from the idea to the manufacturing aspects, with all the technical and technological problems, is described. The validation product was carried out by means of user evaluation questionnaires from sixty-four windsurfing beginners in several countries over world. The results show that the users are significantly satisfied with the product.展开更多
In order to improve the radiator cap of the automobile cover forming quality and efficiency, this paper applies the UG software to carry out the design of the injection mold, and use Moldflow software to simulate and ...In order to improve the radiator cap of the automobile cover forming quality and efficiency, this paper applies the UG software to carry out the design of the injection mold, and use Moldflow software to simulate and analyze the position of gate filling, flow, cooling and other aspects of application, to determine the best inject location and optimize die structure design. The research results show that the combination of CAD and CAE technology can effectively improve the mold design quality, shorten die development cycle, and reduce the cost of development.展开更多
Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are ris...Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are rising in height,steel towers are required to be sufficiently strong and stiff,consequently leading to high construction costs.To tackle this problem,a new type of prestressed concrete tower was designed employing a novel tower concept having a regular octagon cross section with interior ribs on each side,which was optimized by comparing the natural frequency and stress difference under the same lateral load in different directions of the tower.The designed tower features a tapered profile that reduces the area subjected to wind;the tapered profile reduces the total weight,applied moment and the capital cost.An optimization method was developed employing ABAQUS software and a genetic algorithm.A target function was defined on the basis of the minimum cost of the concrete and prestressed tendon used,and constraints were applied by accounting for the stress,displacements and natural frequency of the tower.Employing the method,a 100 m prestressed concrete tower system for a 5 MW turbine was optimized and designed under wind and earthquake loads.The paper also reports a systematic design procedure incorporating the finite element method and the optimization method for the prestressed concrete wind-turbine towers.展开更多
文摘The hardware optimization technique of mono similarity system generation is presented based on hardware/software(HW/SW) co design.First,the coarse structure of sub graphs' matching based on full customized HW/SW co design is put forward.Then,a universal sub graphs' combination method is discussed.Next,a more advanced vertexes' compression algorithm based on sub graphs' combination method is discussed with great emphasis.Experiments are done successfully with perfect results verifying all the formulas and the methods above.
基金Project(2011CB013406)supported by National Basic Research Program of ChinaProjects(51305119,51375133)supported by National Natural Science Foundation of China
文摘Since the complex impeller structure and the difficult remanufacturing process may easily cause advance remanufacturing or excessive use,an optimized design method of impeller and service mapping model was presented for its proactive remanufacturing with setting up to explore the best remanufacturing time point in this work.Considering a certain model of long distance pipeline compressor impeller with the Basquin equation and the design method of impeller,the mathematical relationship between the changes of structure and life of the impeller was established.And the service mapping model between the structure and life was set up and simulated by ANSYS software.Thus,the service mapping model was applied to feedback the original design for proactive remanufacturing.In this work,the best proactive remanufacturing time point of impeller was analyzed with the service mapping model,and the structural parameter values could be optimized at this time point.Meanwhile,in the results of this simulation,it proves that the impeller under this optimization performance could satisfy the impeller operating demands.Therefore,comparing with the traditional optimization design method,the remanufacturing optimized design based on the service mapping model is feasible in proactive remanufacturing for sustainable development.
文摘The inner flow field of a biogas plant can be optimized by agitating the feedstock to be evenly distributed for a rising biogas production rate. A hydraulic agitator can be installed in the digester with outlets far above the bottom. Hydraulic mixing is essential in a solid-liquid two-phase flow process, in which large solid particles can be found at the initial stage and turn to being high-concentration viscous liquid (non-Newtonian fluid). A 0.75 m3 digester was taken as a case study with CFD (computational fluid dynamics) software. The basic pattern was simulated by using water as the medium and the pattern of pseudo plastic fluid state was simulated by the Euler-Euler Model, then the effect of optimized design with bottom inflow and high dispersed outlets could be verified. Viewed from the mixing effects, the velocity of 0.6 m/s is better than l m/s for water medium, while 1 m/s better than 0.6 m/s for pseudo plastic fluid medium.
基金This work was supported by the National Basic research Program of China (2007CB310600)the National Natural Science Foundation of China under Grants No. 60532070 and No. 60525107
文摘Although Alternate Parallel Receiver (APRX) could effectively improve the maximum demodulating rate of the receiver, its frequency domain processing module consumes a large amount of multiplication units when the number of parallel input channels is large, making it unsuitable for use on FPGA software defi ned radio platforms. This paper proposes an optimization scheme by introducing partitioned convolution and exploring the spectrum characteristic of the APRX input data, reducing the usage of multipliers greatly. After the optimization, the number of real multipliers used in the frequency-domain processing module of the 16-ary APRX is reduced from about 576 to 68, with little performance loss. This optimized APRX is fairly suitable for FPGA software defi ned radio platform applications.
文摘In this study, the engine suspension system was optimized for making the vibration between engine and car body minimized, and also the optimization was simulated using software Adams. The purpose of this study was to research the vibration isolation of the engine mounting system and implement multi-objective optimization for the intrinsic frequency. In this paper, the optimization was implemented in two ways: (1) the intrinsic frequency was optimized by reasonably allocating it: (2) the intrinsic frequency was optimized using energy decoupling. The optimized intrinsic frequencies were simulated using software Adams and then the simulation results were compared. The simulation results showed that the optimized energy distribution was almost up to 90% and the decoupling degree was greatly improved by comparing the initial data, proving the optimized data played a geater effect on engine vibration isolation and further verifying the feasibility of optimization design method.
文摘Research and development within the windsurfing field is comprised purely of previous experience, prototype building and testing on the water. The use of Computer Aided Design (CAD) systems and simulation packages can significantly help in the design and testing phases by optimizing the design before a prototype is built. In the paper, supported by these software tools, the authors show a new patented system, named iDO, developed with the aim to stabilize the windsurf, to allow reducing the initial difficulties that a beginner meets in the learning phase. The design process, from the idea to the manufacturing aspects, with all the technical and technological problems, is described. The validation product was carried out by means of user evaluation questionnaires from sixty-four windsurfing beginners in several countries over world. The results show that the users are significantly satisfied with the product.
文摘In order to improve the radiator cap of the automobile cover forming quality and efficiency, this paper applies the UG software to carry out the design of the injection mold, and use Moldflow software to simulate and analyze the position of gate filling, flow, cooling and other aspects of application, to determine the best inject location and optimize die structure design. The research results show that the combination of CAD and CAE technology can effectively improve the mold design quality, shorten die development cycle, and reduce the cost of development.
基金supported by the National Natural Science Foundation of China(Grant No.51078231)
文摘Wind energy is a clean and renewable energy for which technology has developed rapidly in recent years.Wind turbines are commonly supported on tubular steel towers.As the turbine size is growing and the towers are rising in height,steel towers are required to be sufficiently strong and stiff,consequently leading to high construction costs.To tackle this problem,a new type of prestressed concrete tower was designed employing a novel tower concept having a regular octagon cross section with interior ribs on each side,which was optimized by comparing the natural frequency and stress difference under the same lateral load in different directions of the tower.The designed tower features a tapered profile that reduces the area subjected to wind;the tapered profile reduces the total weight,applied moment and the capital cost.An optimization method was developed employing ABAQUS software and a genetic algorithm.A target function was defined on the basis of the minimum cost of the concrete and prestressed tendon used,and constraints were applied by accounting for the stress,displacements and natural frequency of the tower.Employing the method,a 100 m prestressed concrete tower system for a 5 MW turbine was optimized and designed under wind and earthquake loads.The paper also reports a systematic design procedure incorporating the finite element method and the optimization method for the prestressed concrete wind-turbine towers.