期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进粒计算的K-medoids聚类算法 被引量:11
1
作者 潘楚 罗可 《计算机应用》 CSCD 北大核心 2014年第7期1997-2000,共4页
针对传统K-medoids聚类算法对初始聚类中心敏感、收敛速度缓慢以及聚类精度不够高等缺点,提出一种基于改进粒计算、粒度迭代搜索策略和优化适应度函数的新算法。该算法利用粒计算思想在有效粒子中选择K个密度大且距离较远的粒子,选择其... 针对传统K-medoids聚类算法对初始聚类中心敏感、收敛速度缓慢以及聚类精度不够高等缺点,提出一种基于改进粒计算、粒度迭代搜索策略和优化适应度函数的新算法。该算法利用粒计算思想在有效粒子中选择K个密度大且距离较远的粒子,选择其中心点作为K个聚类初始中心点;并在对应的K个有效粒子中进行中心点更新,来减少迭代次数;采用类间距离和类内距离优化适应度函数来提高聚类的精度。实验结果表明:该算法在UCI多个标准数据集中测试,在有效缩短迭代次数的同时提高了算法聚类准确率。 展开更多
关键词 K-medoids聚类算法 改进粒计算 粒度迭代搜索策略 优化适应度函数
下载PDF
基于P-PSO算法的室内有障碍通风环境下的多机器人气味源搜索 被引量:13
2
作者 李飞 孟庆浩 +1 位作者 李吉功 曾明 《自动化学报》 EI CSCD 北大核心 2009年第12期1573-1579,共7页
受湍流影响,室内通风环境下的烟羽分布表现出波动变化且不连续的特性;在一些角落处,较大的漩涡会产生长时间的局部浓度极值区;另外室内的障碍物也会改变烟羽的分布状况.因此室内有障碍通风环境下的机器人气味源搜索问题变得很复杂.本文... 受湍流影响,室内通风环境下的烟羽分布表现出波动变化且不连续的特性;在一些角落处,较大的漩涡会产生长时间的局部浓度极值区;另外室内的障碍物也会改变烟羽的分布状况.因此室内有障碍通风环境下的机器人气味源搜索问题变得很复杂.本文提出了基于概率适应度函数的粒子群优化(Probability-fitness-function based particle swarm optimization,P-PSO)算法并用于多机器人气味源搜索.P-PSO算法的特点是采用概率而非确定数来表达适应度函数值.针对气味源搜索问题,P-PSO算法的适应度函数值由贝叶斯和变论域模糊推理估计的气味源概率表达.为验证提出的搜索策略,构建了对应实际边界条件的室内通风环境的烟羽模型.仿真研究证明了本文提出的P-PSO搜索算法用于解决气味源搜索问题的可行性. 展开更多
关键词 基于概率适应度函数的粒子群优化 多机器人 气味源搜索 贝叶斯推理 模糊推理 室内通风环境
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部