期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
地震优化非线性反演方法及应用研究 被引量:10
1
作者 李勇 邵泽辉 李琼 《矿物岩石》 CAS CSCD 北大核心 2004年第1期101-104,共4页
 地震优化非线性反演方法是一种集遗传算法和人工神经网络技术的优势于一体的新技术,它采用混合智能优化学习方法,这种优化学习方法是将BP算法作为一个算子嵌入到自适应遗传算法中,以概率Pbp的方式进行搜索运算,从而,快速而精确地找到...  地震优化非线性反演方法是一种集遗传算法和人工神经网络技术的优势于一体的新技术,它采用混合智能优化学习方法,这种优化学习方法是将BP算法作为一个算子嵌入到自适应遗传算法中,以概率Pbp的方式进行搜索运算,从而,快速而精确地找到全局最优解。在嘉陵江组的实际反演研究中,由井点出发构造测井资料与井旁地震道的非线性映射关系,并自适应地更新这种非线性映射关系和自适应外推,以获得嘉陵江组的高分辨率反演剖面,这种高分辨率剖面清晰而详细地反映出嘉陵江组在纵横方向上的变化特征,有效识别这种薄储层,获得了很好的储层预测效果,并为钻井所证实,在嘉陵江组储层中获得高产工业气流。因此,地震优化非线性反演方法具有广阔的应用前景。 展开更多
关键词 遗传-神经网络 优化非线性反演 混合算法 映射
下载PDF
非线性最优化反演在河西务南部石炭—二叠系滚动勘探中的应用 被引量:1
2
作者 王连山 朱庆忠 +4 位作者 宋子军 吴振东 杨和义 彭毅斌 钟德盈 《物探化探计算技术》 CAS CSCD 2006年第2期109-112,共4页
非线性最优化反演技术是基于地震信息以及构造模型和测井信息形成的约束,采用最优化方法进行反演来最大限度地推断储层横向变化。应用非线性最优化反演技术预测河西务南部石炭-二叠系的含油储层分布取得了良好的效果,为本区滚动勘探... 非线性最优化反演技术是基于地震信息以及构造模型和测井信息形成的约束,采用最优化方法进行反演来最大限度地推断储层横向变化。应用非线性最优化反演技术预测河西务南部石炭-二叠系的含油储层分布取得了良好的效果,为本区滚动勘探的突破提供了有力的决策依据。 展开更多
关键词 非线性优化反演 构造模型 测井信息约束 储层预测 潜山油藏 滚动勘探
下载PDF
地震道非线性最优化反演 被引量:1
3
作者 胡光岷 贺振华 黄德济 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2001年第z1期240-247,共9页
在非线性最优化理论的基础上提出了地震道反演的非线性最优化方法,推导出地震道非线性最优化反演所需的梯度向量、Hasse矩阵,并对测井约束反演、反演稳定性等问题进行了探讨.理论模型和实际资料的反演结果表明,这一方法是地震道反演的... 在非线性最优化理论的基础上提出了地震道反演的非线性最优化方法,推导出地震道非线性最优化反演所需的梯度向量、Hasse矩阵,并对测井约束反演、反演稳定性等问题进行了探讨.理论模型和实际资料的反演结果表明,这一方法是地震道反演的一种有效手段. 展开更多
关键词 非线性优化反演 Hasse矩阵 地震波阻抗.
下载PDF
动水射流多参数多目标非线性遗传优化耦合反演方法研究 被引量:1
4
作者 李明昌 司琦 +1 位作者 梁书秀 孙昭晨 《水力发电学报》 EI CSCD 北大核心 2014年第4期92-97,共6页
本文将遗传算法和变密度各项异性湍浮力射流模型有机结合,提出了满足最佳稀释效果和最低能源消耗的射流比与射流喷角多参数多目标非线性遗传优化耦合反演的新方法:将射流模型和运行能源消耗公式嵌入到遗传算法模型中,以最佳污水稀释效... 本文将遗传算法和变密度各项异性湍浮力射流模型有机结合,提出了满足最佳稀释效果和最低能源消耗的射流比与射流喷角多参数多目标非线性遗传优化耦合反演的新方法:将射流模型和运行能源消耗公式嵌入到遗传算法模型中,以最佳污水稀释效果和最低能源消耗为目标,进行射流模型多参数的优化耦合反演。研究结果表明基于非线性遗传优化的多参数多目标耦合反演方法可以获得最优的射流参数,有利于提高射流水体与环境水体间的掺混效果,降低污水输送能源消耗。 展开更多
关键词 环境水力学 射流模型 多目标 非线性遗传优化耦合反演 射流比 射流喷角
原文传递
A two-stage CO-PSO minimum structure inversion using CUDA for extracting IP information from MT data 被引量:1
5
作者 董莉 李帝铨 江沸菠 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1195-1212,共18页
The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear i... The study of induced polarization (IP) information extraction from magnetotelluric (MT) sounding data is of great and practical significance to the exploitation of deep mineral, oil and gas resources. The linear inversion method, which has been given priority in previous research on the IP information extraction method, has three main problems as follows: 1) dependency on the initial model, 2) easily falling into the local minimum, and 3) serious non-uniqueness of solutions. Taking the nonlinearity and nonconvexity of IP information extraction into consideration, a two-stage CO-PSO minimum structure inversion method using compute unified distributed architecture (CUDA) is proposed. On one hand, a novel Cauchy oscillation particle swarm optimization (CO-PSO) algorithm is applied to extract nonlinear IP information from MT sounding data, which is implemented as a parallel algorithm within CUDA computing architecture; on the other hand, the impact of the polarizability on the observation data is strengthened by introducing a second stage inversion process, and the regularization parameter is applied in the fitness function of PSO algorithm to solve the problem of multi-solution in inversion. The inversion simulation results of polarization layers in different strata of various geoelectric models show that the smooth models of resistivity and IP parameters can be obtained by the proposed algorithm, the results of which are relatively stable and accurate. The experiment results added with noise indicate that this method is robust to Gaussian white noise. Compared with the traditional PSO and GA algorithm, the proposed algorithm has more efficiency and better inversion results. 展开更多
关键词 Cauchy oscillation particle swarm optimization magnetotelluric sounding nonlinear inversion induced polarization (IP) information extraction compute unified distributed architecture (CUDA)
下载PDF
Swarm intelligence optimization and its application in geophysical data inversion 被引量:30
6
作者 Yuan Sanyi Wang Shangxu Tian Nan 《Applied Geophysics》 SCIE CSCD 2009年第2期166-174,共9页
The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swa... The inversions of complex geophysical data always solve multi-parameter, nonlinear, and multimodal optimization problems. Searching for the optimal inversion solutions is similar to the social behavior observed in swarms such as birds and ants when searching for food. In this article, first the particle swarm optimization algorithm was described in detail, and ant colony algorithm improved. Then the methods were applied to three different kinds of geophysical inversion problems: (1) a linear problem which is sensitive to noise, (2) a synchronous inversion of linear and nonlinear problems, and (3) a nonlinear problem. The results validate their feasibility and efficiency. Compared with the conventional genetic algorithm and simulated annealing, they have the advantages of higher convergence speed and accuracy. Compared with the quasi-Newton method and Levenberg-Marquardt method, they work better with the ability to overcome the locally optimal solutions. 展开更多
关键词 Swarm intelligence optimization geophysical inversion MULTIMODAL particle swarm optimization algorithm
下载PDF
Inversion of 3D density interface with PSO-BP method 被引量:4
7
作者 ZHANG Dailei ZHANG Chong 《Global Geology》 2016年第1期33-40,共8页
BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural n... BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value. 展开更多
关键词 INVERSION 3D density interface Moho interface BP neural network particle swarm optimization
下载PDF
A Quadratic precision generalized nonlinear global optimization migration velocity inversion method
8
作者 Zhao Taiyin Hu Guangmin +1 位作者 He Zhenhua Huang Deji 《Applied Geophysics》 SCIE CSCD 2009年第2期138-149,共12页
An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear glob... An important research topic for prospecting seismology is to provide a fast accurate velocity model from pre-stack depth migration. Aiming at such a problem, we propose a quadratic precision generalized nonlinear global optimization migration velocity inversion. First we discard the assumption that there is a linear relationship between residual depth and residual velocity and propose a velocity model correction equation with quadratic precision which enables the velocity model from each iteration to approach the real model as quickly as possible. Second, we use a generalized nonlinear inversion to get the global optimal velocity perturbation model to all traces. This method can expedite the convergence speed and also can decrease the probability of falling into a local minimum during inversion. The synthetic data and Mamlousi data examples show that our method has a higher precision and needs only a few iterations and consequently enhances the practicability and accuracy of migration velocity analysis (MVA) in complex areas. 展开更多
关键词 Pre-stack depth migration migration velocity analysis generalized nonlinear inversion common imaging gather
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部