期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
PCNN模型耦合参数的优化及车辆图像分割 被引量:25
1
作者 杨娜 陈后金 +1 位作者 李艳凤 郝晓莉 《交通运输系统工程与信息》 EI CSCD 北大核心 2012年第1期48-54,共7页
脉冲耦合神经网络(PCNN)具有良好的图像分割特性,但神经网络参数的选取对分割效果有较大影响,如何自适应地选择网络参数是脉冲耦合神经网络应用研究的重要内容.本文首次从脉冲耦合神经网络的耦合特性出发,结合神经计算原理及图像局部区... 脉冲耦合神经网络(PCNN)具有良好的图像分割特性,但神经网络参数的选取对分割效果有较大影响,如何自适应地选择网络参数是脉冲耦合神经网络应用研究的重要内容.本文首次从脉冲耦合神经网络的耦合特性出发,结合神经计算原理及图像局部区域的灰度特性,提出了脉冲耦合神经网络耦合参数的优化算法.首先利用Hebb学习规则对脉冲耦合神经网络模型的链接权值矩阵进行更新,然后利用图像局部区域的均方差自适应确定神经元链接强度系数,最后将优化的PCNN模型应用于运动车辆图像分割.通过耦合参数的优化,增强了神经元之间的耦合强度,与传统PCNN的车辆分割结果相比,较好地避免了过分割和欠分割现象,提高了运动车辆图像中车牌区域的分割质量,为后续车辆特征的提取奠定了良好的基础. 展开更多
关键词 信息技术 优化pcnn模型 HEBB规则 局域均方差 运动车辆 图像分割
下载PDF
基于视觉注意机制PCNN模型的车牌图像分割方法
2
作者 杨娜 陈后金 陈益强 《交通运输系统工程与信息》 EI CSCD 北大核心 2014年第3期51-57,共7页
车辆图像中车牌具有所占比例小、位置不固定、大小不一,以及分割易受光照影响的特点.因此,车牌图像的分割始终是车辆跟踪、车辆识别等领域中的难点问题.针对以上问题,本文提出了基于视觉注意机制脉冲耦合神经网络模型的车牌图像分割方法... 车辆图像中车牌具有所占比例小、位置不固定、大小不一,以及分割易受光照影响的特点.因此,车牌图像的分割始终是车辆跟踪、车辆识别等领域中的难点问题.针对以上问题,本文提出了基于视觉注意机制脉冲耦合神经网络模型的车牌图像分割方法.该方法将视觉注意机制中的数据驱动模式和任务驱动模式相结合.数据驱动模式中,通过对PCNN模型细胞感受野功能的完善,使优化PCNN模型具有了尺度性和方向性.任务驱动模式中,针对不同尺度的分割,利用组合不变矩和局部灰度熵,自适应地确定目标的特征尺度和最佳尺度,并确定该目标最终的分割结果.经实验验证,该方法对车牌图像具有较好的分割效果. 展开更多
关键词 信息技术 图像分割 视觉注意机制 优化pcnn模型 组合不变矩 局部灰度熵
下载PDF
一种优化脉冲耦合神经网络模型及在图像分割中的应用 被引量:5
3
作者 安琦 李敏 +1 位作者 何玉杰 姚俊萍 《计算机科学》 CSCD 北大核心 2014年第S1期215-217,共3页
针对目前脉冲耦合神经网络(PCNN)神经元模型参数主要通过人工设定问题,以简化参数为目的将PCNN模型的调制参数β与连接权矩阵K简化为链接系数矩阵W,提出一种优化PCNN神经元模型。该模型应用于图像分割时,充分利用图像本身空间和灰度特... 针对目前脉冲耦合神经网络(PCNN)神经元模型参数主要通过人工设定问题,以简化参数为目的将PCNN模型的调制参数β与连接权矩阵K简化为链接系数矩阵W,提出一种优化PCNN神经元模型。该模型应用于图像分割时,充分利用图像本身空间和灰度特性自动确定链接系数,实现对图像的有效分割。实验结果表明,所提方法可以有效对图像进行自动分割,其分割效果优于Otsu方法、人工调整PCNN参数方法。 展开更多
关键词 优化pcnn模型 参数设定 图像自动分割
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部